

Muhammad Yusuf Hidayat <yusufitri@poliupg.ac.id>

Acknowledgement of Submission (Manuscript #BFSA-2112-1253)

1 pesan

Bulletin of Pharmaceutical Sciences. Assiut <jssub@ekb.eg> Balas Ke: "Bulletin of Pharmaceutical Sciences. Assiut" <jssub@ekb.eg> Kepada: yusufitri@poliupg.ac.id, yusufitri@gmail.com Cc: gfetih@yahoo.com

5 Desember 2021 01.17

Manuscript ID: BFSA-2112-1253

Manuscript Title: EFFECT OF EXTRACTION TIME ON THE BIOACTIVE COMPOUNDS OF BOTTLE GOURD (LAGENARIA SICERARIA) USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Authors: Muhammad Yusuf, Sri Indriati, Nur Fitriani Usdyana Attahmid, Rahmawati Saleh, Akhmad Rifai

Dear Mr. Muhammad Yusuf

I wish to acknowledge receiving the of the above mentioned manuscript.

It should be noted that the manuscript will be reviewed for possible publication in the Scientific Journals Management System.

Please be sure that the submitted manuscript has not been published previously and will not be submitted elsewhere prior to our decision.

Our editorial decision will be brought to your attention once the paper has been reviewed due the referees consideration.

I wish to take this opportunity to thank you for sharing your work with us.

Truly yours,

Executive managing Editor of Bulletin of Pharmaceutical Sciences. Assiut

Muhammad Yusuf Hidayat <yusufitri@poliupg.ac.id>

Acknowledgement of Revision (Manuscript #BFSA-2112-1253 (R1))

1 pesan

Bulletin of Pharmaceutical Sciences. Assiut <jssub@ekb.eg> Balas Ke: "Bulletin of Pharmaceutical Sciences. Assiut" <jssub@ekb.eg> Kepada: yusufitri@poliupg.ac.id, yusufitri@gmail.com Cc: gfetih@yahoo.com 3 Januari 2022 15.21

Manuscript ID: BFSA-2112-1253 (R1)

Manuscript Title: EFFECT OF EXTRACTION TIME ON THE BIOACTIVE COMPOUNDS OF BOTTLE GOURD (LAGENARIA SICERARIA) USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Authors: Muhammad Yusuf, Sri Indriati, Nur Fitriani Usdyana Attahmid, Rahmawati Saleh, Akhmad Rifai

Date: 2021-12-04

Dear Mr. Muhammad Yusuf

Thank you for submitting the revised file of your manuscript to the Bulletin of Pharmaceutical Sciences. Assiut

The Editorial Office will proceed on your manuscript and inform you in the earliest time.

If there is anything else, please do not hesitate to contact us.

Truly yours,

Executive Managing Director of Bulletin of Pharmaceutical Sciences. Assiut

EFFECT OF EXTRACTION TIME ON THE BIOACTIVE COMPOUNDS OF BOTTLE GOURD (LAGENARIA SICERARIA) USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Abstract

Traditional medical systems have always been played an important role in meeting global healthcare needs. Meanwhile, bottle gourd (Lagenaria siceraria) is a vegetable that contains health-promoting secondary metabolites. Therefore, this study aims to determine the bioactive compounds profiling of Bottle gourd (Lagenaria siceraria) fruit extracts in methanol and chloroform using gas chromatography-mass spectrometry (GC-MS) with variations in extraction time of 10, 20, and 30 min using GC-MS RTX-5 capillary column. A total of 91 compounds were tentatively identified, with 55 found in methanol and 41 in chloroform extract. The 1:2 (v/v) ratio using methanol solvent at 30 min was suggested as the most suitable time for maximum extraction. Several peaks with high area percentages were discovered in the methanolic extract containing key chemical constituents such as stearic, oleic, palmitic, and linoleic acid, as well as Cholesta-4,6-dien-3-one, gamma sitosterol, and Phenol, 2,2'-methylene bis. Meanwhile, the corresponding constituents from chloroform extract include Tetracontane, Dotriacontane, Phenol, 2,2'methylenebis, esters, and aromatic derivatives. Most of the bioactive compounds were detected between 20-30 min time of extraction. Moreover, fatty acids, methyl and ethyl esters, as well as sterols represent 40% of the total extracts and were dominated by oleic, and palmitic acid, gamma-sitosterol along with its ethyl and methyl esters. Based on the results, bottle gourd contains various valuable compounds, indicating its pharmaceutical, biomedical, and food functional potential.

Keywords: Bottle gourd, Bioactive compounds, Chloroform, GC-MS, Methanol.

INTRODUCTION

Plants with high antioxidant levels, such as vitamin C, tocopherols, polyphenols and carotenoids, are gaining popularity in the food industry as alternatives to synthetic antioxidants which have limited use due to safety concerns ¹. Meanwhile, synthetic antioxidants have long been used for foods to prevent lipid oxidative rancidity, nutritional loss, off-flavor, quality loss, and discoloration. Aside from extending the shelf life of foods, these compounds also slow the progression of various oxidative stress-related chronic diseases in humans. Furthermore, due to the role in protecting the body from reactive nitrogen species. crystallization, reactive oxygen species, and free radicals from either normal metabolic processes or external sources, dietary antioxidants play an essential role as nutraceuticals ²⁻⁴. Several mechanisms are presumably involved in this protection, including inhibition of free radical generation, increased scavenging capacity against free radicals, reduced capacity, and metal chelating ability. These reactions are commonly used in antioxidant activity tests. A wide range of activities is determined using antioxidant activity assays with the lipidic system as a substrate ^{3,5}.

Bottle gourd (Lagenaria siceraria) is relatively easy to plant and the planting area is spread in various parts of the world, ranging from tropical to subtropical climates, as well as highlands to the lowlands. This plant is rich in nutrients containing calcium, iron, vitamin C, polyphenols and saponins which are beneficial for health, therefore, it is taken as daily food. Furthermore, bottle gourd is a common vegetable due to its high choline, phenolics, vitamin B complex, and vitamin C content ⁶, while the juice is well-known for its cardioprotective, cardiotonic, aphrodisiac, and diuretic properties, as well as an antidote to some poisons. Bottle gourd juice is also beneficial for maintaining the body's alkaline reserve due to its less acidic nature ⁷. Meanwhile, the ability of bottle gourd juice (BGJ) to be used as a health drink, is dependent on the extraction and preservation of functional components such as phenolics, carotenoids, and ascorbic acid. Therefore, the processing method selected is essential due to the presence of heat-sensitive components like phenolics, carotenoids, ascorbic acid, and the perishable nature of the product. The best method is the fresh bottle gourd juice extraction. To date, no

Commented [GAMH1]: Thoroughly english-eding is needed. There are many typing and grammatical mistakes.

Commented [GAMH2]: This is a broad vision that needs much more evidences. That can not be concluded from the results of current studies. Thus, please modify.

Commented [GAMH3]: Instead of using solvent as keyword, use the methods of extraction.

Commented [Sabrin Ib4]: Unify through the whole MS.

Commented [Sabrin Ib5]: ????

attempt has been made to investigate the effects of processing on bottle gourd juice functional components to store and improve efficiency.

Bottle gourd contains phytochemicals that are beneficial to the body and also produce reactive oxygen species. Meanwhile, the inhibition of reactive oxygen species (ROS) production, direct or indirect scavenging of free radicals, and alteration of intracellular redox potential are all biochemical activities of natural antioxidants. Furthermore, antioxidants, such as carotenoids, flavonoids, polyphenolics, vitamin A, vitamin C, and vitamin E are abundant in vegetables and fruits, preventing free radical damage and lowering the risk of chronic diseases. Therefore, the consumption of dietary antioxidants from these sources potentially prevents cardiovascular diseases, especially atherosclerosis⁸. Bottle gourd analysis using the ohmic thermal method with variations in temperature and time combined with Gas and Liquid chromatographymass spectrometry was used to detect volatile and non-volatile phenolics. The ohmically blanched samples exhibited maximum extraction of phenolics and better color of BG juice compared to other samples⁹, while the free radical scavenging activity of Lagenaria siceraria fruit ethanolic extract using the FRAP method and ethanol solvents was 1.95 mg/ml^{-3} . In other studies, a combination of the blanching process and sonication extraction to improve the quality of gourd juice bottle showed significant improvements in the total phenolics (TP), carotenoids, total soluble solids (TSS), and physical stability (PS). Other parameters such as titratable acidity (TA), pH, ascorbic acid (AA), browning index (BI), total plate count (TPC), as well as yeast and mold count experienced a significant decrease ¹⁰. The formulations of blended bottle gourd juice, aonla, lemon, and ginger using response surface methodology (RSM) with minimal thermal process showed quality stability against physicochemical, sensory, and microbiology parameters ¹¹. Moreover, bottle gourd optimization using acetone, ethanol, and methanol solvents with Liquid Chromatography-Mass Spectrometry (LC-MS) analysis found the presence of tetracyclic triterpene-cucurbitacin, as well as other pharmaceutically essential compounds ¹². Another study performed an in-vitro analysis of wild bottle gourd against antioxidant content, antidiabetic, antiacetylcholine esterase, and anticancer activities using Reversed-Phase-High Performance Liquid

Chromatography (RP-HPLC) and FTIR spectroscopy. It was concluded that wild bottle gourd is a rich source of bioactive metabolites ^{13,14}.

Therefore, this study aims to investigate and characterize the bioactive compounds in the different crude extracts of Bottle gourd (*Lagenaria siceraria*) to determine the physiological, pharmacological, and flavor. Meanwhile, bottle gourd is a medicinal plant and has been attributed to beneficial health effects, but there are only a few studies related to this topic. However, the effect of extraction time with sonication and solvents variations has not been reported. In general, the analysis of bioactive compounds is usually conducted using gas chromatography-mass spectrometry (GC-MS).

MATERIAL AND METHODS

Materials

Bottle gourd was purchased from the local market and stored at room temperature for 24 h (Fig. 1), while the chemicals used include analytical grade hexane (emsure 99%), methanol (emsure 99.8%), and chloroform (supelco 99%) supplied by Merck Millipore (Burlington, Massachusetts, United States). Moreover, the instruments used include Shimadzu 2010 GC-MS, Elma Ultrasonic Cleaner S60H, and Buchi Rotary Rotavapor R-300.

Preparation of the extract

Bottle gourd was picked and washed with flowing tap water after separating the fruit into epicarp, mesocarp, and seeds. The fresh fruit was then homogenized, for example, the mesocarp was ground separately in an electric mixer grinder. To extract the sample with a ratio of 1:2, 20 ml of bottle gourd juice was mixed with 40 ml hexane (v/v) and transferred to a conical flask which was then immersed in an ultrasonic bath (Elma Ultrasonic) at 40°C for 20 min. Finally, the filtrate was used for sonication extraction using methanol and chloroform solvents. **Commented [Sabrin Ib6]:** This part can be moved above, it is related to the antioxidants.

Commented [GAMH10]: Add the identification and voucher specimen number.

Commented [Sabrin Ib7]: what is this value represent?

Commented [Sabrin Ib8]: the abbreviation is incorrect

Commented [Sabrin Ib9]: Where??

Fig. 1: Bottle gourd.

Ultra-sonication assisted extraction (UAE)

20 ml filtrate was transferred to a conical flask containing 40 ml solvent methanol or chloroform (1:2 v/v). Furthermore, all the conical flasks were immersed in an ultrasonic bath (Elma Ultrasonic) with a temperature of 40°C, for 10, 20, and 30 min.

Table 1:	Extraction	time of	bottle	gourd	using
Ultra-Son	ication Assi	isted Ext	raction	(UAE)).

Solvent	Extraction time (min)
	10
Chloroform	20
	30
	10
Methanol	20
	30

GC-MS determination

This was carried out using Shimadzu 2010 GC-MS and RTX-5 capillary column (30 mm x 0.25 mm x 0.25 μ m) with a split ratio of 40:1 and a temperature of 70°C, heating rate of 10°C min⁻¹, up to 300°C, maintained for 5 min with a total analysis time of 25 min. Helium was used as a carrier gas flowing constantly at 1.0 ml/min and the temperature of the inlet was 280°C, pre-column pressure was 80 kPa, and ionization voltage of 70 eV ¹⁵.

RESULTS AND DISCUSSION

Identification of bioactive compound by GC–MS

The phytochemical constituents of bottle gourd were extracted sequentially using two different organic solvents varying in polarity from 4.1 (chloroform) to 5.1 (methanol) and at a different time extraction (Table 1), while the chemical constituents were analyzed using gas chromatography-mass spectrometry. Fig. 2 illustrates the chromatograms of two crude extracts, with 100 different identified compounds (Tables 2-3), which were then classified into ten chemical groups based on the common name, retention time (Rt), and percent peak area. The chemical groups identified include esters derived from fatty acids, fatty alcohols, fatty acids (FA), amines, aromatic, phenolics, hydrocarbons, terpenes, and sterols, among others. Furthermore, the bioactive compounds were identified using NIST 2.7 and Willey 8 libraries in GC-MS. The chloroform extract contained the fewest compounds (10) after 10 min extraction time, while the highest (25) was identified in the methanol extract after 30 min (Table 2).

Resource properties of bottle gourd

Terpenes

Terpenes were detected using methanol solvents in extraction times of 10 and 30 min as shown in Table 2. Furthermore, Table 3 shows that terpenes were detected in all bottle gourd extracts using chloroform solvents. The total terpenes using both solvents in 10, 20 and 30 min extraction time represented by 2,6,10,14,18,22-tetracosahexaene, and 2,6,10,15,19,23-hexamethyl-, (all-e), were the most dominant and represented 1.55 and 0.47% of total peak area for methanol extracts as well as 16.27, 4.88, and 5.47% for chloroform extracts. Meanwhile, 2,6,10,14,18,22-tetracosahexaene, and 2,6,10,15,19,23-hexamethyl-, (all-e) have been detected in several plants. These bioactive compounds were identified as strong drugs with biomedical activities to strengthen the body's resistance, resist fatigue, improve human immunity, protect the liver, and were considered substances with great potential in the nutraceutical and pharmaceutical industries in functional and therapeutic applications ¹⁶.

Commented [GAMH11]: Should be compounds.

Commented [GAMH12]: What does this number represent? Is it written correctly?

Commented [GAMH13]: What does this number represent?. Is it written correctly?

 Table 2: GC–MS detection of bioactive compounds from bottle gourd using methanol solvent in 10, 20, and 30 min time of extraction.

 Peak
 Rt
 Area (%)
 Bioactive compound

Peak	Rt	Area (%)	Bioactive compound		
(a) Extraction time 10 min					
Terpenes					
15	33.992	1.55	2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23- hexamethyl-, (all-E)		
Esters	•				
6	16.716	1.63	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl- 1,3-propanediyl ester		
8	20.918	2.86	Hexadecanoic acid, methyl ester		
10	21.843	1.26	Hexadecanoic acid, ethyl ester		
11	23.308	0.77	9,12-octadecadienoic acid (z,z)-, methyl ester		
12	23.393	0.41	8,11,14-docosatrienoic acid, methyl ester		
13	24.291	0.46	Linoleic acid ethyl ester		
Fatty alco	ohols				
7	18.058	0.59	1-hentetracontanol		
Fatty aci	ds				
9	21.524	3.18	n-Hexadecanoic acid		
Aromatic					
2	5.261	51.86	Ethylbenzene		
3	5.433	28.62	P-Xylene		
4	5.852	4.18	Benzene, 1,2-dimethyl		
Others	0.00-				
1	5.054	0.73	Cyclotrisiloxane, hexamethyl		
5	9.226	0.84	Cyclotrisiloxane, hexamethyl		
14	29,924	1.06	Bis(2-ethylhexyl) phthalate		
	action time 2		<u></u>		
Aromatic					
1	5.262	37.59	Ethylbenzene		
2	5.333	7.23	Benzene, ethyl-		
3	5.433	22.15	P-xylene		
4	5.853	1.99	Benzene, 1,2-dimethyl-		
Esters	01000	1.77	Sentene, 1,2 annealy		
5	16.712	0.91	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl- 1,3-propanediyl ester		
7	20.901	2.80	Hexadecanoic acid, methyl ester		
8	21.826	1.02	Hexadecanoic acid, then ster		
9	23.290	0.85	9,12-octadecadienoic acid (z,z)-, methyl ester		
10	24.272	0.63	Linoleic acid ethyl ester		
Fatty alco		0.05	Emotore acta ethyl ester		
6	18.018	1.40	1-tetradecanol, acrylate		
Phenolic.		1.40			
<u>1 nenouc.</u> 11	28.119	2.99	Phenol, 2,2'-methylenebis		
Fatty aci		2.))	Thenoi, 2,2 -incuryicheois		
12	29.913	0.79	1,2-benzenedicarboxylic acid		
Sterols	27.715	0.75			
13	33.314	0.72	Cholesta-4,6-dien-3-one		
15	38.965	0.72	Stigmast-5-en-3-ol, oleat		
Others	50.905	0.39	511gmast-J-611-J-01, 016at		
14	34.021	18.35	Tetrakis (2,3-ditert-butylphenyl)-4,4'-biphenylene diphosphonat		
	ction time 3	1	Ten akis (2,5-unert-butyipitenyi)-4,4-bipitenyiene diphosphonat		
(C) Extra	cuon ume 3	0 min			

Commented [GAMH14]: It is better to make one table containing all compounds reported from both solvents at each time, to be easy for comparison.

Aromatic			
1	5.229	20.11	Ethylbenzene
2	5.310	7.24	Benzene, ethyl-
3	5.400	19.44	P-xylene
4	5.823	1.79	Benzene, 1,2-dimethyl-
5	5.942	0.76	Octane, 2,4,6-trimethyl
6	7.794	0.36	Octane, 3,5-dimethyl
Hydrocar	rbons		
7	9.563	0.37	Undecane
Fatty acid	ds		
8	16.703	0.25	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3- pro
11	21.437	4.56	n-hexadecanoic acid
17	24.025	2.13	6-octadecenoic acid, (z)
19	24.353	1.35	9,12-octadecadienoic acid (z,z)
23	29.910	0.42	1,2-benzenedicarboxylic acid
Esters			
9	18.339	0.33	Tetradecanoic acid, methyl ester
10	20.883	4.32	Hexadecanoic acid, methyl ester
12	21.811	1.60	Hexadecanoic acid, ethyl ester
13	23.273	1.71	9,12-octadecadienoic acid (z,z)-, methyl ester
14	23.367	1.46	8,11,14-docosatrienoic acid, methyl ester
15	23.446	0.37	9-octadecenoic acid, methyl ester
16	23.742	0.51	Octadecanoic acid, methyl ester
20	24.450	0.37	9-octadecenoic acid (z)-, ethyl ester
21	24.742	0.25	Octadecanoic acid, ethyl ester
18	24.255	1.56	Ethyl (9z,12z)-9,12-Octadecadienoate
Sterols		-	
22	28.460	26.82	Stigmast-5-En-3-Ol, (3.Beta.,24s)
25	38.976	1.45	Stigmast-5-en-3-ol, oleat
Terpenes			
24	33.986	0.47	2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-e)

 Table 3: GC-MS detection of bioactive compounds from bottle gourd using chloroform solvent in 10, 20, and 30 min time of extraction.

Peak	Rt	Area (%)	Bioactive compound			
(a) Extraction time 10 min						
Esters	Esters					
2	20.997	37.36	Hexadecanoic acid, methyl ester			
3	21.200	2.16	Betan-acetylneuraminic acid, methyl ester-2-methyl-7,9- methyl-boronate-3,8-di(trimet)			
4	21.919	1.57	Hexadecanoic acid, ethyl ester			
5	23.466	28.37	9-Octadecenoic acid (Z)-, methyl ester			
6	23.831	6.06	Octadecanoic acid, methyl ester			
7	29.939	1.51	1,2-benzenedicarboxylic acid, diisooctyl ester			
Terpenes						
8	33.995	16.27	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-E)- alkohol			
Aromatic amines						
10	35.283	2.18	1-isopentyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 1h-py			
Others						

1	6.470	2.53	Ethane, 1,1,2,2-tetrachloro-			
9	35.050	1.99	3,3,7,11-Tetramethyltricyclo[5.4.0.0(4,11)]undecan-1-ol			
(b) Extra	(b) Extraction time 20 min					
Aromatic						
1	5.435	5.58	Ethylbenzene			
Fatty acid	ds					
3	16.782	2.28	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3- pro			
7	31.842	1.84	22.alphahydroxy-3,4-secostict-4(23)-en-3-oic acid			
Phenolics	5	1				
5	28.149	2.78	Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-			
Esters						
6	29.935	2.48	1,2-benzenedicarboxylic acid, diisooctyl ester			
8	32.025	3.61	Decanoic acid, 8-chloro-, chloromethyl ester			
14	34.400	2.86	2,5,9-Trimethyl-12-oxododeca-4,8-dienoic acid, methyl ester			
Sterols						
9	32.208	11.56	Stigmast-7-en-3-ol, (3.beta.,5.alpha.,24s)-			
10	32.342	3.67	Stigmast-7-en-3-ol, (3.beta.,5.alpha.,24s)-			
Terpenes		<u>I</u>				
12	33.993	48.88	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-E)			
Hydrocar	rbons	I				
13	34.234	4.06	Hexacontane			
15	37.556	2.58	Hexacontane			
Others						
2	6.472	3.29	Ethane, 1,1,2,2-tetrachloro-			
4	18.085	2.49	Spiro(tetrahydrofuryl)2.1'(decalin), 5',5',8'a-trimethyl-			
11	33.817	2.04	1-Propanol, 2,3-bis[(3,7,11,15-tetramethylhexadecyl)oxy]-			
(c) Extra	ction time 3		<u> </u>			
Hydrocar						
1	15.419	1.74	Hexadecane, 2,6,10,14-tetramethyl-			
17	34.232	6.24	Tetracontane			
18	35.765	6.56	Dotriacontane			
19	37.570	4.83	Tetracontane			
20	39.727	3.54	Dotriacontane			
Fatty alco						
3	18.103	6.06	1-tetradecanol, acrylate			
4	18.404	3.59	1-tridecanol			
6	21.583	2.41	1-octadecanol			
10	24.777	1.74	1-octadecanethiol			
Esters						
2	16.732	8.93	Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3- propanediyl ester			
5	20.957	10.31	Hexadecanoic acid, methyl ester			
7	21.867	4.60	Hexadecanoic acid, ethyl ester			
8	23.413	9.86	9-octadecenoic acid, methyl ester			
9	23.782	5.50	Octadecanoic acid, methyl ester			
11	25.000	2.00	Acetic acid, octadecyl ester			
Aromatic		2.00				
12	26.813	1.42	1h-purin-6-amine, [(2-fluorophenyl)methyl]-			
Phenolic:		1.12	in pain o annio, [[2 nuorophenyi/menyi]			
13	28.124	11.46	Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-			
Terpenes		11.10				
Terpenes						

16	33.986	5.47	2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23- hexamethyl-, (all-E)
Others			
14	30.813	2.13	Tetracosamethyl-cyclododecasiloxane
15	32.700	1.61	Tetracosamethyl-cyclododecasiloxane

Esters

Twenty-two different esters were identified with varying extraction times using methanol solvents (Table 2) and fourteen using chloroform (Table 3). Hexadecanoic acid, methyl and ethyl esters were the most dominant derivative using methanol solvent amounting to 2.86%, 2.80%, and 4.32%, while ester derived from Hexadecanoic acid, ethyl ester represented approximately 1.26%, 1.02%, and 1.60% of the total ester peak area. Meanwhile, the extract with chloroform solvent, identified Hexadecanoic acid, methyl ester (37.36% and 10.31%), 9-Octadecenoic acid (Z)-, methyl ester (28.37% and 9.86%), Propanoic acid, 2-1-(1,1-dimethyl ethyl)-2-methyl-1,3methyl-, propanediyl ester (8.93%), Hexadecanoic acid, ethyl ester (1.57% and 4.60%), and Octadecanoic acid, methyl ester (5.50%) as the most dominant derivatives. Other beneficial esters in the extract of bottle gourd, include Octadecanoic acid, methyl ester, and 9-octadecenoic acid, methyl ester. Octadecanoic acid, methyl ester or stearic acid, is suitable for biodiesel production ¹⁷, while 9octadecenoic acid, methyl ester (oleic acid, methyl ester) reportedly plays an essential role in health care, especially in the treatment of cancer and other diseases ¹⁸. In this case, 9-hexadecenoic acid was used to represent various bottle gourd extracts containing polyunsaturated fatty acids (PUFA/n-7). Besides, PUFAs have been shown to play critical roles in tissue metabolism and cellular, including thermal adaptation, electron and oxygen transport, regulation of membrane fluidity and potentially reduce the risk of coronary heart disease 19

Fatty acids (FA)

Fatty acids are active substrates and allopathic agents with a widely known antibacterial effect ²⁰. Saturated fatty acids are synthesized from acetyl coenzyme A by plants and animals as long-term energy storage forms, while saturated fatty acids affect hypercholesterolemia and induce cyclooxygenase-2 expression ²¹. As shown in Table

3, the fatty acid composition of bottle gourd, extracted using methanol solvents was represented by five saturated fatty acids namely n-Hexadecanoic Acid (3.18% and 4.56%), 1,2-benzene dicarboxylic acid (0.79% and 0.42%), Propanoic acid, 2-methyl-, 1-(1,1-dimethyl ethyl)-2-methyl-1,3-pro (0.25%), 6-octadecanoic acid, (z) (2.13%), and 9,12-octadecadienoic acid (z,z) (1.35%) (Table 2). Meanwhile, the fatty acid composition identified using chloroform as a solvent showed two saturated fatty acids namely Propanoic acid, 2-methyl-, 1-(1,1-dimethyl ethyl) 2-methyl-1,3-pro (2.28%), and 22.alpha.-hydroxy-3,4-secostict-4(23)-en-3-oic

acid (1.84%) (Table 3). n-Hexadecanoic Acid (Palmitic acid) is a saturated long-chain fatty acid with a 16-carbon. Based on the results, palmitic and linoleic acid were the dominant fatty acids bottle gourd extracts. Meat, kernel oil, palm oil, cheese, butter, and milk all contain palmitic acid, this type of fatty acid is reportedly used in pharmaceuticals as an antioxidant, treatment for cancer, and hypercholesterolemic prevention ²². Meanwhile, Phthalic acid or 1,2-benzenedicarboxylic acid is used in China to clean pollutants and contaminated soils ²³, while Linoleic acid is a source of PUFA, useful in pharmaceutical and medicine for antihistaminic, anticoronary, antieczemic, antiacne, anticancerous, analgesic and ulcerogenic ^{15,24}.

Fatty alcohols

Natural fatty alcohols derived from plant or animal lipids are used as detergents, plastics, and in pharmaceuticals ^{19,25}. The bottle gourd extracted from methanol solvent contains one saturated fatty alcohols namely 1-hentetracontanol (0.59%), while four saturated fatty alcohols namely 1-tetradecanol, acrylate (6.06%), 1-tridecanol (3.59%), 1octadecanol (2.41%), and 1-octadecanethiol (1.74%) were identified with chloroform (Table 2-3). Saturated fat alcohols are chemical intermediates for surfactants and are widely used in pharmaceutical formulations, agrochemicals, as well as personal, and home care products ^{19,25}.

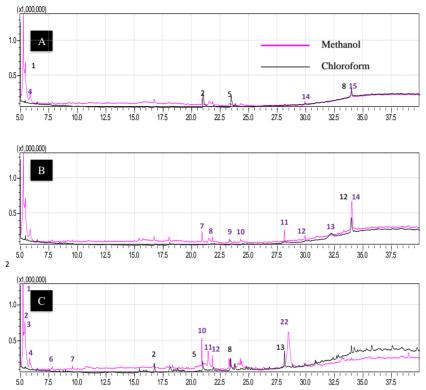


Fig. 2: Chromatograms of different crude extracts. (A) methanol and chloroform in 10 min time extraction; (B) methanol and chloroform in 20 min time extraction; (C) methanol and chloroform in 30 min time extraction.

Phenolic compounds

The GC–MS analysis of bottle gourd extracts showed the major phenolics in methanol and chloroform extracts. The percentage of total phenolics varies depending on the extraction solvent, ranging from 2.99% in methanol extract (20 min) to 2.78% and 11.46% in chloroform with an extraction time of 20 and 30 min (Table 2-3). The identified phenolics include Phenol, and 2,2'-methylenebis-6-(1,1-dimethyl ethyl)-4-methyl. Meanwhile, solubility, type of solvent, and polarity in the extraction influence phenolics recovery ³². Furthermore, the polarity of the solvent is important in increasing solubility ³³. Phenolic compounds have been used pharmacologically as antimicrobial,

against neurodegenerative pathologies, and anticarcinogenic. Another study by ³⁴, reported that the antioxidant capacity of different *Lagenaria siceraria* (bottle gourd) extracts relates directly to the phenolic content. The study identified and isolated six phenolics compounds, including phenolic glycoside (*E*)-4-hydroxymethyl-phenyl-6-*O*-caffeoyl- β -d-glucopyranoside which has high antioxidant activity according to the in-vitro analysis. In addition, the fruit of *Lagenaria siceraria* (Molina) is a potentially rich source of natural radical scavengers ³. Analysis of free radical scavenging activity in ethanol extract showed that the percentage of inhibition was 89.21%.

Hydrocarbons

The hydrocarbon content in bottle gourd differed between extraction solvents, with Undecane (0.37%) for methanol and hexacontane (4.06 and 2.58%) for chloroform with an extraction time of 20 min. Meanwhile, for the 30 min, more hydrocarbons were identified namely Hexadecane, 2,6,10,14-tetramethyl (1.74%), Tetracontane (6.24 and 4.83%), and Dotriacontane (6.56 and 3.54%), with the majority being Alkanes (5 hydrocarbons). Tetracontane and Dotriacontane have been detected in *Caralluma retrospiciens (Ehrenb)*, while *Asclepias Curassavica L* has antimicrobial, antifungal, and antibacterial effects ^{29,31}.

Sterols

C29 sterols, also known as phytosterols, are important precursors of vitamin D, while some of the derivatives play a major role in reducing lowdensity lipoprotein cholesterol in-vivo Phytosterols in bottle gourd were represented by three different steroids, for an extraction time of 20 min, Cholesta-4,6-dien-3-one (0.72%) and Stigmast-5-en-3-ol, oleat (0.59%) were identified, while more components such as Stigmast-5-en-3-ol, oleat (26.82% and 1.45%) were identified at 30 min. Furthermore, chloroform sterols were identified as Stigmast-7-en-3-ol (11.56 and 3.67%) at total peak area with an extraction time of 20 min (Table 2-3), while stigmast-5-En-3-Ol, (3.Beta., 24s) or Gamma Sitosterol is the most predominant in bottle gourd using methanol solvent. Cholesta-4.6-dien-3-one and gamma sitosterol investigated from Alginate Glycyrrhiza glabra L and Bidens pilosa L are used in pharmaceuticals as an antihepatotoxic, antiviral, antioxidant, cancer preventive, and hypocholesterolemic ^{36,37}, while Stigmast-7-en-3-ol Djulis investigated from (Chenopodium formosanum Koidz.), has great potential to be developed in the industry as enriched functional foods and nutraceuticals. Based on literature studies, the phytosterols identified by GC-MS are biologically active compounds and have several health benefits, including antioxidant activities and anti-cancer 38.

Aromatic, amine and Others

Using methanol extract, two compounds from different chemical groups were identified and are listed in Table 2, namely 1 phthalate derivative (1.06%) and Tetrakis (2,3-ditert-butylphenyl)-4,4'-

biphenylene diphosphonat (18.53%), while four compounds were identified from choloroform extract as shown in Table 3, namely Ethane, 1,1,2,2tetrachloro (2.53% and 3.29%). Spiro (tetrahydrofuryl)2.1'(decalin), 5'.5'.8'a-trimethyl (2.49%), and 1-Propanol, 2,3-bis[(3,7,11,15tetramethylhexadecyl)oxy] (2.04%). In addition, six aromatic compounds were identified in the methanol extract, namely Ethylbenzene (51.86%, 37.59%, and 20.11%), P-xylene (28.62%, 22.15%, and 19.44%), Benzene, 1,2-dimethyl (4.18%, 1.99%, and 1.79%), Benzene, ethyl (4.18%, 7.23%, and 7.24%), Octane, 2.4.6-trimethyl (0.76%), and Octane, 3,5-dimethyl (0.36%) while Ethylbenzene (5.58%) and 1h-purin-6-amine, [(2-fluorophenyl) methyll (1.42%) were found in the chloroform extract. Also one amines namely 1-isopentyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1hpy (2.18%) was found. Meanwhile, ethylbenzene, pxylene and benzene, 1,2-dimethyl are aromatic compounds often found in cucurbitaceous plants such as Lagenaria siceraria fruits. Tetracosamethyl-cyclododecasiloxane is commonly used in the cosmetics and fragrance

commonly used in the cosmetics and fragrance industry 39 , while 3,3,7,11-Tetramethyltricyclo[5.4.0.0(4,11)] undecan-1-ol was detected in *Eucalyptus granlla* wood and is used as pesticide to protect the environment 40 .

CONCLUSION

Several valuable compounds were found in the methanol and chloroform extracts of bottle gourd, including fatty acids and alcohols, terpenes, phenolics, hydrocarbons, amines, and esters. The solvent used affects the extracted compounds, particularly fatty acids, esters, amines, phenolics, and sterols, while the presence of antioxidants and sterols (PUFA) in bottle gourd suggests its potential as a source of nutrient in human and animal foods. Furthermore, bottle gourd potential in industrial fragrance and cosmetics was demonstrated by the high concentration of hydrocarbons, esters, and amines. The extraction time of 20-30 min is the optimal range for maximum retention of bioactive compounds. Meanwhile, the identified compounds play an essential role in the development of food functionals and pharmaceutical prospects. However, further studies are needed to identify the various biological activities for the better development of novel pharmaceuticals and food functionals.

Compound	Bioactivity	References
Palmitic acid/ Hexadecanoic acid	Hemolytic, 5-α reductase inhibitor, antiandrogenic, antioxidant, hypocholesterolemic, nematicide, flavor	15,24
Oleic acid/9-octadecenoic acid	Antiandrogenic cancer-preventive, dermatitigenic hypocholesterolemic, antiinflammatory, 5-α reductase inhibitor, anemiagenic, and flavor	15,24
Stearic acid/Octadecanoic acid	Cosmetic, flavor, $5 - \alpha$ reductase inhibitor, hypocholesterolemic	15,24
Linoleic acid/9,12-octadecadienoic acid	Nematicide antiarthritic, hypocholesterolemic, hepatoprotective antiandrogenic, antihistaminic, antieczemic, antiacne, anticancerous, diuretic, analgesic, $5-\alpha$ reductase inhibitor, anticoronary, and ulcerogenic	15,24
Gamma sitosterol/Stigmast-5-En-3-Ol	Antihepatotoxic, Anticancer, antiviral, antioxidant, <i>Antihyperglycemic</i> , hypocholesterolemic	15,26
Myristic acid/ Tetradecanoic acid, methyl ester	Antimicrobial activity	27
Phenol, 2,2'-methylenebis	Antioxidant	19
Petroselinic acid	Antiaging and antiinflammatory	28
Tetracontane	Antibacterial activity	29
Dotriacontane	Antioxidant, Antimicrobial activity, antispasmodic	30,31

Commented [GAMH15]: There is no need for this table. The information in this table is already mentioned by the authors in the text.

Competing Interests

The authors declare that there are no competing interests.

Funding

The authors are grateful to Politeknik Negeri Ujung Pandang for the financial support provided through BOPTN in 2020.

Authors' Contributions

The author(s) read and approved the final manuscript.

Acknowledgement

The authors are grateful to Politeknik Negeri Ujung Pandang for supporting this study through the BOPTN funding scheme in 2020.

REFERENCES

- Msukwa, V. J., Munthali, C. R. Y., Nyoka, B. I. & Missanjo, E. Phenology of sclerocarya birrea (A. rich.) hochst. provenances. *Emerg. Sci. J.* 3, 1–13 (2019).
- Bera, D., Lahiri, D. & Nag, A. Studies on a natural antioxidant for stabilization of edible oil and comparison with synthetic antioxidants. *J. Food Eng.* 74, 20–26 (2006).
- Mayakrishnan, V., Veluswamy, S., Sundaram, K. S., Kannappan, P. & Abdullah, N. Free

radical scavenging potential of Lagenaria siceraria (Molina) Standl fruits extract. *Asian Pac. J. Trop. Med.* **6**, 20–26 (2013).

- Kien, P. H., Khamphone, Y. & Trang, G. T. T. Study of Effect of Size on Iron Nanoparticle by Molecular Dynamics Simulation. *HighTech Innov. J.* 2, 158–167 (2021).
- Foti, M. C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59, 1673–1685 (2007).
- Bhat, S., Saini, C. S., Kumar, M. & Sharma, H. K. Effect of Thermal and Alternate Thermal Processing on Bottle Gourd (Lagenaria siceraria) Juice. *J. Food Process. Preserv.* 41, 1–9 (2017).
- Upaganlawar, A. & Balaraman, R. Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: A biochemical and histoarchitecture study. J. Young Pharm. 3, 297–303 (2011).
- Uttara, B., Singh, A., Zamboni, P. & Mahajan, R. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. *Curr. Neuropharmacol.* 7, 65–74 (2009).
- 9. Bhat, S., Saini, C. S. & Sharma, H. K. Changes in total phenolic content and color of bottle gourd (Lagenaria siceraria) juice upon

Commented [GAMH16]: Who runs the work????

conventional and ohmic blanching. *Food Sci. Biotechnol.* **26**, 29–36 (2017).

- Bhat, S. & Sharma, H. K. Combined effect of blanching and sonication on quality parameters of bottle gourd (Lagenaria siceraria) juice. *Ultrason. Sonochem.* 33, 182–189 (2016).
- Gajera, R. R. & Joshi, D. C. Development and quality evaluation of bottle gourd, lagenaria siceraria (Mol.) standl. based blend juice. *Indian J. Nat. Prod. Resour.* 6, 194–199 (2015).
- Attar, U. A. & Ghane, S. G. Optimized extraction of anti-cancer compound – cucurbitacin I and LC–MS identification of major metabolites from wild Bottle gourd (Lagenaria siceraria (Molina) Standl.). South African J. Bot. 119, 181–187 (2018).
- Attar, U. A. & Ghane, S. G. In vitro antioxidant, antidiabetic, antiacetylcholine esterase, anticancer activities and RP-HPLC analysis of phenolics from the wild bottle gourd (Lagenaria siceraria (Molina) Standl.). *South African J. Bot.* **125**, 360–370 (2019).
- 14. Dutta, A. *et al.* Synthesis and characterization of host guest inclusion complexes of cyclodextrin molecules with theophylline by diverse methodologies. *Emerg. Sci. J.* **4**, 52–72 (2020).
- Yusuf, M. *et al.* Optimization ultrasonic assisted extraction (UAE) of bioactive compound and antibacterial potential from sea urchin (diadema setosum). *Curr. Res. Nutr. Food Sci.* 8, 556–569 (2020).
- Peng, W. *et al.* Characteristics of antibacterial molecular activities in poplar wood extractives. *Saudi J. Biol. Sci.* 24, 399–404 (2017).
- Cubas, A. L. V., Machado, M. M., Pinto, C. R. S. C., Moecke, E. H. S. & Dutra, A. R. A. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology. *Waste Manag.* 47, 149– 154 (2016).
- Ukwubile, C. A., Ahmed, A., Katsayal, U. A., Ya'u, J. & Mejida, S. GC–MS analysis of bioactive compounds from Melastomastrum capitatum (Vahl)Fern. leaf methanol extract: An anticancer plant. *Sci. African* 3, 1–8 (2019).
- Abdel-Aal, E. I., Haroon, A. M. & Mofeed, J. Successive solvent extraction and GC-MS analysis for the evaluation of the phytochemical constituents of the filamentous

green alga Spirogyra longata. *Egypt. J. Aquat. Res.* **41**, 233–246 (2015).

- McGaw, L. J., Jäger, A. K. & Van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. *South African Journal* of *Botany* vol. 68 417–423 (2002).
- Lee, J. Y., Sohn, K. H., Rhee, S. H. & Hwang, D. Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4. J. Biol. Chem. 276, 16683–16689 (2001).
- 22. Ahmad, M. *et al.* Effect of extraction time on antioxidants and bioactive volatile components of green tea (Camellia sinensis), using GC/MS. *Cogent Food Agric.* **1**, 1–11 (2015).
- Ma, T. *et al.* A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils. *Front. Environ. Sci. Eng. China* 7, 31–42 (2013).
- Vadivel, E. & Gopalakrishnan, S. B. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn. *Int. J. Pharma Bio Sci.* 2, 313–320 (2011).
- Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. Amines, Aliphatic in Ullmann's Encyclopedia of Industrial Chemistry. Ullmann's Encyclopedia of Industrial Chemistry (2015).
- Yusuf, M., U.A., N. F., Mahyati, L. & Imran, M. Phytochemical and antibacterial properties of sea cucumber (Muelleria lecanora) from Barrang Lompo Islands, Makassar South Sulawesi. *Food Res.* 4, 1885–1895 (2020).
- Shobier, A. H., Abdel Ghani, S. A. & Barakat, K. M. GC/MS spectroscopic approach and antifungal potential of bioactive extracts produced by marine macroalgae. *Egypt. J. Aquat. Res.* 42, 289–299 (2016).
- Beyzi, E., Karaman, K., Gunes, A. & Buyukkilic Beyzi, S. Change in some biochemical and bioactive properties and essential oil composition of coriander seed (Coriandrum sativum L.) varieties from Turkey. *Ind. Crops Prod.* **109**, 74–78 (2017).
- Alqahtani, S. S., Makeen, H. A., Menachery, S. J. & Moni, S. S. Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity Part B. Arab. J. Chem. 13, 7370–

7377 (2020).

- Soosairaj, S. & Dons, T. Bio-active compounds analysis and characterization in ethanolic plant extracts of Justicia tranquebariensis L. (Acanthaceae) – Using GC-MS. *Int. J. ChemTech Res.* 9, 260–265 (2016).
- Bihana, S., Dhiman, A., Singh, G. & Satija, S. Gas chromatography-mass spectroscopy analysis of bioactive compounds in the whole plant parts of ethanolic extract of Asclepias Curassavica L. *Int. J. Green Pharm.* 12, 107– 114 (2018).
- 32. Dent, M. *et al.* The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. *Food Technol. Biotechnol.* **51**, 1–10 (2013).
- Naczk, M. & Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. *Journal of Pharmaceutical and Biomedical Analysis* vol. 41 1523–1542 (2006).
- Mohan, R., Birari, R., Karmase, A., Jagtap, S. & Bhutani, K. K. Antioxidant activity of a new phenolic glycoside from Lagenaria siceraria Stand. fruits. *Food Chem.* 132, 244–251 (2012).
- Francavilla, M., Trotta, P. & Luque, R. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: A potentially novel industrial application. *Bioresour. Technol.* 101, 4144–4150 (2010).
- Akhtar, R. & Shahzad, A. Alginate encapsulation in Glycyrrhiza glabra L. with phyto-chemical profiling of root extracts of in vitro converted plants using GC-MS analysis. *Asian Pac. J. Trop. Biomed.* 7, 855–861 (2017).
- Shen, Y. *et al.* Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent's analysis by GC-MS. *J. Ethnopharmacol.* 217, 126–133 (2018).
- Huang, C. Y., Chu, Y. L., Sridhar, K. & Tsai, P. J. Analysis and determination of phytosterols and triterpenes in different inbred lines of Djulis (Chenopodium formosanum Koidz.) hull: A potential source of novel bioactive ingredients. *Food Chem.* 297, 124948 (2019).
- 39. Fadle, N., Abdalbasit Adam Mariod, Hiba

Abdel Rahman Ali & Alfatih Ahmed. TLC and GC-MS analysis of fermented wood 'Nikhra' petroleum ether fraction of Combretaceae spp. Combretum hartmannianum and Terminalia laxiflora. *Eurasian J. For. Sci.* **6**, 1–7 (2018).

 Ge, S. *et al.* Study on antibacterial molecular drugs in Eucalyptus granlla wood extractives by GC-MS. *Pak. J. Pharm. Sci.* 28, 1445–1448 (2015).

Muhammad Yusuf Hidayat <yusufitri@poliupg.ac.id>

Acceptance of Manuscript (Manuscript #BFSA-2112-1253 (R1))

1 pesan

Bulletin of Pharmaceutical Sciences. Assiut <jssub@ekb.eg> Balas Ke: "Bulletin of Pharmaceutical Sciences. Assiut" <jssub@ekb.eg> Kepada: yusufitri@poliupg.ac.id, yusufitri@gmail.com 23 Januari 2022 23.17

Manuscript ID: BFSA-2112-1253 (R1)

Manuscript Title: EFFECT OF EXTRACTION TIME ON THE BIOACTIVE COMPOUNDS OF BOTTLE GOURD (LAGENARIA SICERARIA) USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Authors: Muhammad Yusuf, Sri Indriati, Nur Fitriani Usdyana Attahmid, Rahmawati Saleh, Akhmad Rifai

Dear Mr. Muhammad Yusuf

This is to confirm that after technical and in-house evaluation, the above mentioned manuscript has been finalized and accepted for publication in the journal.

Looking forward to your future submissions.

Truly yours,

Editorial Office of Bulletin of Pharmaceutical Sciences. Assiut