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Optimal protein performance in techno-functional and

bio-functional foods is largely determined by thermal

processing, leading to physical or chemical interactions with

other constituents found in the commercial formulation. There

is a need to understand at a fundamental level the kinetics of

molecular transport of bioactive compounds, including

vitamins, essential fatty acids, antioxidants and caffeine, from

protein-based excipients in nutraceutical-type products.

Physical interactions in these systems are further manipulated

by crosslinking the protein network for controlled delivery in

relation to the physicochemical environment of the release

medium. Altering the processing conditions from ambient and

pasteurisation temperatures to UHT treatment brings into play

the denaturation of the milk protein, added to beverages that

affects its association with phenolic compounds. These are

found naturally in oat or wheat insoluble fibre, which is

increasingly incorporated in formulations of added value

foods, for example liquid breakfast. Potential formation of

chemical interactions between hydroxycinnamic or

hydroxybenzoic acids from insoluble dietary fibre and milk

proteins following UHT processing and prolonged storage

at ambient temperature may involve unexpected

physiological and nutritional effects. We aim to review the

significant results in this new and evolving field of dairy

protein–ligand interactions in an effort to assist with planning

further experiments for the design of convenient and nutritious

foods.
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Introduction
Proteins are well known for their functional role as

supporting materials in the physical structure of pro-

cessed foods, assisting in the formation of a variety of

gels, foams, and emulsions [1]. Additionally, they are

utilised for their entrapping properties, bovine milk pro-

teins, in particular, are well suited as protective excipients

for bioactive materials, with wide applications in the

delivery of natural bioactive compounds [2]. Part of this

review aims to provide an overview of the current knowl-

edge in the control and measurement of the kinetics

involved in the controlled/targeted delivery of bioactives

from milk-protein matrices.

In a similar vein, the fortification of convenience foods,

including liquid breakfast, with additional dietary fibre

from grains (mainly wholegrain oat and wheat) is also of

growing industrial and consumer interest in improving

nutrition and health [3]. This is not least due to the high

content of phenolic compounds present, particularly phe-

nolic acids associated with natural insoluble fibres,

thought to be beneficial to well-being by assisting in

the prevention of chronic disease including cardio vascu-

lar disease by lessening problems such as atherosclerosis,

hypertension, and thrombosis [4]. In commercial formu-

lations, phenolic acids are found in the vicinity of milk

protein chains that leads inevitably to molecular interac-

tions. These interactions have been investigated exten-

sively and are fairly well understood at low processing

temperatures. Thus, the molecular size of phenolic com-

pounds, solution pH, temperature, and ingredient con-

centration are the main factors affecting the mostly

reversible, that is, physical associations that take place

during processing and subsequent storage [5].

Although challenging to reproduce at the laboratory scale,

industrial processing of liquid food products commonly

incorporates a UHT step at about 135�C to facilitate long

shelf-life at ambient temperatures. The widely practised

treatment should also result in molecular interactions

between protein constituents and phenolics but it

remains under researched. A recent investigation into

such high temperature systems showed that the interac-

tions might be chemical (covalent and irreversible) rather

than physical (weaker and reversible) in nature [5].

Therefore, the second part of this is review aims to

provide insights and possibilities for further research into
www.sciencedirect.com
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the effect on structural and functional qualities that high

temperature protein–phenolic processing may induce.

Overview of dairy protein as matrix for the
controlled delivery of natural bioactive
compounds
The formation of a delivery vehicle entails the creation of

a barrier, protecting bioactive compounds against unsta-

ble environmental conditions during processing, subse-

quent storage and digestion [6]. As a protective excipient

for bioactives, protein, specifically, has taken many forms

that is films, nanocapsules and microcapsules, beads and

electrospun fibres [7–10]. Theories surrounding the appli-

cation of proteins for the delivery of drugs and food

components have been reviewed by Chen et al. [11]

and de Souza Simões et al. [12], with the diffusion of

bioactives in model food systems being reviewed by

Paramita and Kasapis [13].

Being a natural polymer, proteins exhibit certain physi-

cochemical properties including vulnerability to enzy-

matic degradation, a balanced hydrophilic–hydrophobic

nature, as well as sensitivity to ionic molecules/counter-

ions and thermal treatment [14,15]. These properties can

result in swelling, erosion or shrinking of the protein

matrix during molecular transport phenomena. The for-

mer (swelling and erosion) creates enough space (hole
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free volume) between adjacent polymer chains to allow

transport of bioactives [16]. The later reduces the mesh

size of the polymeric network, impeding the diffusion of

bioactives to the release medium [17]; these effects are

illustrated in Figure 1.

The aforementioned properties can be manipulated by

the modification of protein’s surface area and three-

dimensional structure through physical treatment (i.e.

heating and/or pressurisation), addition of chemical

agents (mainly charged materials), and permanent cross-

linking with various compounds through chemical or

enzymatic reactions [11,18]. These treatments can assist

in altering ingredient functionality in formulations, for

example, via protein aggregation leading to gelation,

which makes proteins ideal systems in designing a con-

trolled/desirable flux in bioactive release.

Protein gelation is associated with denaturation following

two transformational stages, i.e. unfolding of the native

protein conformation to expose reactive amino acid resi-

dues, and the intermolecular associations that reduce chain

flexibility to strengthen the structural rigidity of an infinite

molecular-weight network [19]. This creates a boundary

condition surrounding the bioactive compound that can be

adjusted to meet the requirements of the particular appli-

cation for release within the human GI tract.
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temperatures, there is strong evidence that UHT treat-

ment permanently destabilises this micelle structure,

depletes irreversibly much of the k-casein outer layer,

as well as increases the amount of free casein in the

aqueous solution [61,62].

Whey proteins are distinctly different to caseins in that

they form more orderly, globular structures, and as a result

they are susceptible to heat denaturation and aggregation

[2]. They are made up of a number of variants, the most

numerous being b-lactoglobulin (b-LG) (60%), of which

eleven variants have been identified, a-lactalbumin

(a-La) (20%), the most resistant of the whey proteins

to heat induced unfolding, and bovine serum albumin

(BSA) (3%), which is of particular interest for its affinity to

lipids and free fatty acids as well as its similarity to human

serum albumin (HSA) [63].

Numerous reviews for the evaluation of protein–phenolic

interactions have been produced [64–66], yet all of which

agree that currently a variety of molecular methods with

their own strengths and pitfalls must be employed to gain

a somewhat whole picture. In silico and spectroscopic

methods including UV–vis, Fourier transform infrared

(FTIR), fluorescence emission and circular dicroism

(CD) spectroscopy are common, with more direct meth-

ods such as isothermal titration calorimetry (ITC), mass

spectrometry and chromatographic techniques also being

used. The newer technique of super resolution confocal

microscopy may prove indispensable in the near future

[67]. Table 2 describes some recent literature on low

temperature interactions between casein or whey pro-

teins with phenolic compounds [68–75].

UHT milk protein–phenolic interactions
Modern UHT techniques are able to rapidly heat and cool

processed food products, holding them at the peak tem-

perature (generally 135–145�C) for as little as a few

seconds. This is a vast improvement on older, ‘in contain-

er’ methods, which took far longer allowing for extensive

Maillard type interactions with potentially harmful, anti-

nutritional or simply undesirable properties. It is impor-

tant to note that while direct steam injection systems

achieve this spending no longer than a few additional

seconds above 100�C, more common indirect methods via

tubular or plate heat exchanger take far longer, commonly

more than 60 s [76]. Despite the relatively short proces-

sing time at high temperature, the interactions induced

between macromolecular ingredients and bioactive com-

pounds in the formulation are not negligible.

Research on the functionality of dairy ingredients and

consistency of food products induced by UHT treatment

indicates that permanent chemical interactions do occur

in the case of both whey and casein proteins, creating

unidentified protein fractions [77], affecting digestive
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Table 2

Low temperature interactions between milk proteins and phenolics

Protein Phenolic Method Main findings References

BSA Tannins (PGG) RCL PGG–BSA covalent complexes were formed more readily

under oxidising conditions. Quantified using radio labelling

of PGG

[68]

BSA and HSA Grape seed polyphenols FLQ Larger phenolic compounds were found to quench more

effectively, protein structure also played a role in the binding

affinity

[69]

a-La EGCC DLS

FTIR

DSC

EGCC covalently linked to a-La at pH 8, as a result

disordered secondary structure increased along with

denaturation temperature

[70]

b-Lg CA

EGCC

FA

UV–vis

FLQ

CD

FTIR

EGCC had the strongest binding affinity, complexes were

stabilised by physical interactions at neutral pH

[71]

a-La and b-Lg FA

Caf

Cou

FLQ

CD

FTIR

A reduction in protein a-helical structure upon complexation,

static FLQ indicated complex formation

[72]

WPI, CAS and b-Lg Pelargonidin CD

FLQ

Changes in secondary structure not found, FLQ of WPI and

CAS systems did not change with temperature (25–45�C)
[73]

b-Casein BDMC FLQ

IS

b-Casein encapsulated BDMC, it was bound at the

hydrophobic core, stabilised by physical interactions

[74]

Casein and MG FA, PC, DHB, NH,

SA and GA

TLC

MS

TLC and MS techniques were combined to study protein–

phenolic interactions, can be used as a way to identify

binding sites

[75]

RCL, radiochemical labelling; PGG, 1,2,3,4,6-penta-O-galloyl-D-glucopyranose; HAS, Human salivary a-amylase; FLQ, Fluorescence quenching;

EGCC, Epigallocatechin gallate; DLS, Dynamic light scattering; DSC, Differential scanning calorimetry; CA, Chlorogenic acid; FA, Ferulic acid; Caf,

Caffeic acid; Cou, Coumalic acid; CAS, Caseinate; BDMC, Bismethocycurcumin; IS, In silico; MG, Myoglobin; PC, para-coumaric acid; DHB, 2,4-

Dihydroxybenzoic acid; NH, Ninhydrin; SA, Sinapic acid; GA, Gallic acid; TLC, Thin layer chromatography.
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properties [78] and sedimentation [76], among other

things. Despite a wide body of literature on the topic

of protein–ligand interactions and more specifically on

protein–phenolic interactions at ambient or relatively low

temperature, most work at UHT temperatures has been

focused on interactions and resulting changes to func-

tional properties of milk components exclusively. How-

ever, when it comes to incorporating other ingredients

such as insoluble fibres from micromilled particles of

whole grain oat and wheat flour that contain bound

phenolic compounds, there is a large gap in knowledge

in UHT treated materials.

The temperatures and pressures involved in UHT treat-

ments change the physical properties of water molecules,

for example, the viscosity as well as the dielectric constant

of the aqueous phase decreases as temperature increases,

reducing its polarity and allowing for greater solubility of

less polar organic compounds [79]. In the presence of

endogenous enzymes, this may aid in extracting previ-

ously bound phenolic compounds from insoluble fibres

during processing, making them more available for pro-

tein interaction. Initial research assessing interactions

between milk proteins and phenolic acids at high tem-

peratures argues that they are likely covalent in nature

[5,80], with molecular docking studies indicating that

para-coumaric acid binds to the lysine47 residue of

b-casein (Figure 2). As a result, the bio-functionality

and techno-functionality of both protein and phenolic

may be permanently affected following alterations in the

UHT-treated solution. These findings contrast results

generally observed at ambient or even below the

boiling-point temperatures, in which covalent attachment

is only noted at pH > 8 or under oxidising conditions in

acidic environments.

Analysis of high temperature protein–phenolic interac-

tions should be conducted using highly pure single pro-

tein systems to understand the molecular basis of such

interactions. This poses a problem, as the highly pure

proteins required for accurate and molecular analysis are

expensive and large volumes are needed by even the

smallest scale UHT plants (typically 6 L for a mini-

UHT); in practice, these large sample sizes are exces-

sive/prohibitive considering the expense. To mitigate this

problem, pressure resistant borosilicate glass tubes with a

small (�10 mL) capacity can be utilised, being suspended

in a glycerol bath for heating, with the small volume

ensuring that heating is rapid. It is important that the

tubes are a closed system and rated to withstand the

vapour pressure created at the desired temperature, such

that the bulk of the solution is kept in a liquid phase.

Additionally, the hot pressurised glassware requires sig-

nificant safety precautions and the temperature within

the tube should be logged via a thermowell that allows the

experimental setting to remain closed to the atmosphere.

Once the samples have been processed, they can be

analysed using the advanced methods already in place

for molecular protein–phenolic interactions (see Section

‘Milk protein–phenolic interactions’). It is noted that the

system described is suitable for comparison to a UHT

plant, but care should be taken to match the time/tem-

perature curves by providing rapid enough heating and

cooling to reproduce industrial conditions at a mini scale.

Additionally, shear forces present within a UHT plant

have been shown to have an impact on treated systems

[81] and these would not be replicated due to a lack of

flow within the tube.

A useful addition to analysing the resultant products of

the interaction would be to monitor the reactions as they

are taking place, that is obtaining spectral ‘snapshots’ for

comparison as the temperature of the system moves in a

controlled manner towards its maximum. An overlay of

the resulting spectra may show a general trend and in the

case of FTIR point to the increase or decrease of diatomic

pairs. Such techniques are commonly used in the analysis

of polymer formation, with Mikhaylova et al. [82] provid-

ing a good example. A similar approach could be invalu-

able in demonstrating both conformational changes in

proteins as well as molecular protein–ligand interactions

as a result of UHT processing. In the case of aqueous

systems, most spectrographic devices do not come with

the capability to analyse samples above temperatures of

100�C. However, FTIR analysis can be achieved under

these conditions by using a ‘flow through adaptor’. Brill

and Savage [83] provide a good outline of the experimen-

tal protocol as well as descriptions of adaptor designs that

have been employed in a variety of different studies.

14 Food physics and materials science

Figure 2

Current Opinion in Food Science 

Image showing the best binding conformation between b-casein and

para-coumaric acid, generated by using molecular docking

techniques [77].
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