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A B S T R A C T   

We investigate the effect of added KCl on the glass transition of potassium-κ-carrageenan/polydextrose and 
molecular transport of caffeine. Samples were prepared with 2% (w/w) κ-carrageenan, 82% (w/w) polydextrose 
and 1% (w/w) caffeine to a total solids level of 85% (w/w). KCl was added at 0, 50, 100 and 200 mM to induce a 
dependence of structural properties on the potassium ion concentration. High-resolution spectral data over a 
wide spectral range for the tertiary system were collected using Fourier transform infrared spectroscopy (FTIR), 
which were complemented by tangible evidence of its morphology with scanning electron microscopy (SEM). 
Work then focused on the estimation of the mechanical (Tgm) and calorimetric (Tgc) glass transition temperature 
using in-shear dynamic oscillation and modulated differential scanning calorimetry (MDSC). Molecular transport 
of caffeine in the condensed polysaccharide/co-solute system was followed with UV–vis spectroscopy over a wide 
temperature range (− 20 to 30 ◦C) and modelled with extended diffusion theory. Time-dependent mass transport 
of the diffusant was correlated to the structural relaxation of the polymeric matrix seen in increasing values of the 
mechanical glass transition temperature with higher additions of potassium counterions to κ-carrageenan. It was 
concluded that the mechanical glass transition temperature has a prominent effect on the release kinetics of 
caffeine in these materials, as compared to the calorimetric glass transition temperature.   
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1. Introduction 

Caffeine is a popular bioactive compound naturally found in many 
plant crops, including coffee, tea and chocolate. It is known to have 
advantages as a pain reliever and psychotherapeutic by producing vas-
oconstricting, anti-inflammatory and stimulating effects (Temple et al., 
2017). As a hydrophilic bioactive compound, it has been investigated in 
drug delivery systems in several forms, including tablet/powders, 
chewing gum, topical gel, solid lipid nanoparticles, nano-emulsion and 
hydrogel beads (Shakeel, 2017). The use of excipients to entra-
p/encapsulate caffeine is essential to control its release and preserve its 
bioavailability in the human GI tract. Hydrocolloids have been proposed 

as good carriers (e.g. tablets of spray-dried casein powder) for the 
bioactive compound especially via chemical or physical crosslinking that 
can slow down its release in the surrounding media over several 
hours/days according to the requirements of the therapeutic dose (Tan, 
Ebrahimi, & Langrish, 2019). 

κ-Carrageenan is a sulphated linear polysaccharide made from D- 
galactose as well as 3,6-anhydro D-galactose units (Evageliou, Ryan, & 
Morris, 2019). As an ionic polysaccharide is highly affected by the 
presence of cations in solution that can induce a disorder-to-order 
transition. It is sensitive, in particular, to potassium ions that form 
bridges with the D-galactose sulfate group supporting the formation of 
double helices upon cooling, which at high enough concentrations of the 
polysaccharide create aggregated gels with extensive thermal hysteresis 
(Viebke, Piculell, & Nilson, 1994; Stenner, Matubayasi, & Shimizu, 
2016). The effect of potassium and other cations (sodium and calcium) 
on the thermal stability and aggregation of κ-carrageenan has been 
studied by differential scanning calorimetry (Evageliou et al., 2019) and 
compressive elastic modulus analysis (Wang, Yuan, Cui, & Liu, 2018). 

It has further been shown that the degree of aggregation is also 
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determined by the concentration of the prevalent cations (potassium, 
sodium and calcium) found in most preparations of the polysaccharide 
with industrial interest (Morris, Rees, & Robinson, 1980; Nickerson, 
Paulson, & Hallet, 2004). The effect of temperature is to partially disturb 
the fine network structure leading to the formation of ordered 
super-strands that align in parallel or compactly pack together upon 
cooling (Núñez-Santiago, Tecante, Garnier, & Doublier, 2012; Rochas & 
Rinaudo, 1984). Such reorientations in the ordered conformation con-
trol the mechanism of bioactive compound release in advanced delivery 
vehicles. In this respect, the rubber-to-glass transformation of condensed 
materials becomes of importance in the optimisation of drug release 
(Jiang & Kasapis, 2011; Slade & Franks, 2002). 

Polydextrose is a massively branched low-molecular weight polymer 
of glucose comprising random glycosidic bonds, which are α and β (1–2), 
(1–3), (1–4) and (1–6) arrangements (Stowell, 2009). The polymer has 
an average degree of polymerisation (DP) of 10 with the molecular 
weight ranging from 162 to 20,000 Da (Ribeiro, Zimeri, Yildiz, & Kokini, 
2003). Polydextrose is available in the form of a viscous solution or 
amorphous powder due to the high degree of polydispersity, and it is 
relatively stable in acidic conditions and high temperature. Its glass 
transition temperature is mainly influenced by the increase in moisture 
content of the material, which reflects the plasticizing effect of water 
molecules. Polydextrose is highly soluble in water, but insoluble in 
glycerol, propylene glycol, and ethanol which was confirmed experi-
mentally in this work (Craig, Anderson, Holden, & Murray, 2008). 

Vitrification of the amorphous component of high solid biomaterials 
brings into play the concept of glass transition temperature (Tg), which is 
considered as an index of convenience in the control of the rate of 
physicochemical, enzymatic and biological processes (Roudaut, Sima-
tos, Champion, Contreras-Lopez, & Le Meste, 2004; Gray, Bowen, Far-
hat, & Hill, 2008; Chaudhary, Panyoyai, Small, Shanks, & Kasapis, 
2017). Within the glassy state, i.e. at temperatures below Tg, molecular 
motion is drastically restricted due to diminishing local hole free volume 
in the polymeric matrix (Hoare & Kohane, 2008; Panyoyai, Bannikova, 
Small, & Kasapis, 2015). Formulation of the framework of free volume in 
the theory of diffusion for concentrated polymer/solvent and poly-
mer/plasticizer systems allows quantification of the molecular transport 
of the bioactive compound in targeted delivery systems via the estima-
tion of the apparent diffusion coefficient (Jadhav, Gaikwad, Nair, & 
Kadam, 2009; Paramita, Bannikova, & Kasapis, 2015). 

A recent investigation on the molecular transport of nicotinic acid 
from bovine and fish gelatin networks, demonstrated the effect of the 
glass transition temperature, i.e. at conditions of minimum fluctuations 
in local hole free volume, on the diffusion coefficient of the bioactive 
compound and the decoupling of its rapid diffusion from the structural 
relaxation (α-transition) of the polymeric network (Ikasari, Paramita, & 
Kasapis, 2020). In the present study, we induce distinct 
three-dimensional structures in the κ-carrageenan/polydextrose system 
with variable additions of potassium ions to record a range of glass 
transition temperatures. The measured diffusion coefficients of caffeine 
are examined in relation to the temperature band of the mechanical and 
calorimetric glass transition temperatures, which measure distinct dis-
tance scales (from micro to macromolecular) in vitrification processes. 
Thus, the overall objective of this work is to follow the release mecha-
nism of caffeine, as affected by changes in the structural relaxation of 
κ-carrageenan/polydextrose systems with potassium ion addition and 
ascertain the role of the thermomechanical glass transition temperature 
on the picture of molecular motion of the bioactive compound. 

2. Materials and methods 

2.1. Materials 

κ-Carrageenan, extracted from Euchema cottonii type III, was pur-
chased from Sigma–Aldrich Co. (Sydney, Australia). As a co-solute, Sta- 
Lite III polydextrose powder (95% purity with 4% moisture) was 

supplied by Wilmar BioEthanol Pty. Ltd. (Victoria, Australia). Caffeine 
[C8H10N4O2] used as the bioactive compound was purchased from 
Sigma–Aldrich Co. in the form of white powder at a ReagentPlus grade. 
Ethanol (100%) was the release medium in diffusion experimentation 
and was purchased as an anhydrous colorless liquid from Sigma-Aldrich 
Co. Potassium chloride was supplied by Sigma–Aldrich a Co. and Milli-Q 
Type II water was used for ingredient hydration. 

2.2. Sample preparation 

κ-Carrageenan was changed into the potassium form by eluting 
Amberlite IR-120 resin with 0.1 M HCl until pH reached 1.0. The resin 
was then submerged in 2 M KCl solution to convert H+ to K+ form and 
the remaining of the potassium ions were removed by rinsing with 
water. This is indicated by a clear solution when titrated with AgNO3. 
The resin was heated to 90 ◦C and mixed at that temperature with 0.5% 
(w/w) aqueous κ-carrageenan for 30 min to achieve ion exchange to the 
potassium form. The resulted solution was then poured into 43 mm 
diameter when full cellulose-based semi-permeable tubes and dialysed 
overnight by submerging in Mili-Q water at ambient temperature. This 
was followed by freeze-drying of the polysaccharide solution. Ionic 
composition of both commercial and purified κ-carrageenan samples 
was analysed by us using atomic absorption spectrometry (Varian Inc., 
Palo Alto, USA). Commercial κ-carrageenan contained 2.32% potas-
sium, 0.07% magnesium, 0.78% sodium and 0.52% calcium, whereas 
the purified κ-carrageenan exhibited high levels of potassium (7.31%), 
and low levels of magnesium (0.02%), sodium (0.19%) and calcium 
(0.21%). Experimental materials were prepared by mixing 2% (w/w) 
potassium κ-carrageenan, 82% (w/w) polydextrose and 1% (w/w) 
caffeine. In doing so, κ-carrageenan in the potassium form was dispersed 
in Milli-Q water, containing 0, 50, 100 or 200 mM KCl, with constant 
stirring at 90 ◦C for 10 min followed by addition of caffeine and poly-
dextrose. Thus, four different solutions were prepared to pursue the 
goals of this study. Finally, solutions were poured in a beaker and placed 
in a vacuum oven to remove gently excess water. They formed cylin-
drical gels of 15% (w/w) moisture content with dimensions of 4 cm 
diameter and 0.5 cm thickness. 

2.2. Experimental analysis 

2.2.1. Fourier transform infrared spectroscopy (FTIR) 
Measurements were conducted on a Spectrum Two GladiATR- 

Fourier transform infrared spectroscopy instrument (Perkin Elmer, 
Pike Technologies, Norwalk, US) using a protocol by Panyoyai et al. 
(2015) with some modifications. Samples of κ-carrageenan, poly-
dextrose, caffeine and their mixtures without and with the addition of 
50, 100 and 200 mM KCl were scanned at 600-4000 cm− 1 with a reso-
lution of 4 cm− 1 and averaged over 64 scans. Each preparation was 
recorded three times to yield overlapping interferograms. 

2.2.2. Scanning electron microscopy (SEM) 
Freeze-dried samples of κ-carrageenan, polydextrose and their mix-

tures with and without caffeine, 50, 100 and 200 mM KCl were sputtered 
with iridium coating. They were then analysed using FEI Quanta 200 
SEM (Hillsboro, Oregon, USA) under an intense electron beam and high 
vacuum conditions of 0.6 Torr with a working distance of 10–12 mm 
following a method by Paramita et al. (2015) with some modifications. 
Multiple micrograph images of the specimens were taken using an 
accelerated medium voltage of 30 kV and a spot size of 5. The experi-
mental protocol resulted in high-quality images at a magnification of 
3000 × . 

2.2.3. Modulated differential scanning calorimetry (MDSC) 
The thermal transitions of single polydextrose and κ-carrageenan/ 

polydextrose matrices with and without the addition of caffeine, 50, 100 
and 200 mM KCl were recorded using Q2000 (TA Instruments, New 
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quantified using UV–vis spectrophotometry at λmax = 273 nm and the 
Beer-Lambert Law via a standard absorbance-concentration fit with a 
high linear regression coefficient (r2 = 0.992; data are not shown). 
Fig. 6a represents a typical profile of caffeine release in the κ-carra-
geenan/polydextrose matrix at various additions of KCl over 120 min at 
30 ◦C. Increasing times of observation yield higher amounts of caffeine 
diffusion out of the device, as does the absence of the counterion. Thus, 
after 120 min of observation, the concentration of released caffeine is 
0.54 and 0.18 mg/ml at 0 and 200 mM KCl, respectively. 

Fig. 6b illustrates the outcomes of caffeine diffusion as a function of 
KCl addition within the experimental temperature range of this inves-
tigation at 120 min. It appears that the levels of potassium ions under-
line a rate-limiting step of the entire diffusion sequence achieving high 
kinetics of release at 30 ◦C, which is above the mechanical glass tran-
sition temperature of the system, i.e. within the glass transition region 
(Table 1). On the other hand, relatively limited release is observed at 
− 20 ◦C, which is below Tgm, i.e. within the glassy stage of the matrix. 
The validity of these experimental observations was confirmed using a 
two-way ANOVA test followed by Tukey’s post hoc test, which indicated 

that the release of caffeine was significantly affected by the KCl addi-
tions and the time/temperature settings of this investigation (cutoff for 
significance is p < 0.05). 

Next, the caffeine release was followed by an easy-to-apply model 
(Ritger & Peppas, 1987): 

Mt

M∞
= ktn (4)  

where, Mt and M∞ are the caffeine concentrations during experimenta-
tion and at completion, k is a characteristic constant of the bioactive 
compound-polymer system, t is time in seconds, and n is the kinetic 
diffusion exponent. For the cylindrical disks of this investigation, n 
values between 0.45 and 0.89 denote an anomalous transport, which 
becomes a non-Fickian or Case II transport at higher estimates (Siep-
mann & Siepmann, 2008). Using the gradient in the plot of ln Mt/M∞ 
versus ln t from equation (4), we obtain for the κ-carra-
geenan/polydextrose/caffeine matrices at four KCl additions n values 
within the range of 0.82–1.03 (Table 1). These estimates are at the 
interface of anomalous and Case II transport, an outcome that 

Fig. 3. Modulated DSC thermograms of heating and cooling for 2% κ-car/82% PD/1% Cf, 2% κ-car/82% PD/1% Cf/50 mM KCl, 2% κ-car/82% PD/1% Cf/100 mM 
KCl, 2% κ-car/82% PD/1% Cf/200 mM KCl arranged successively upwards (scanned at a rate of 1 ◦C/min). 

Table 1 
Glass transition parameters and caffeine transport characteristics in κ-carrageenan/polydextrose systems.  

System Tgc 

(◦C) 
Tgm(◦C) To 

(◦C) 
C1

◦ C2
◦

(deg) 
fg  Ea matrix (kJ/ 

mol) 
Ea caffeine (kJ/ 
mol) 

Deff (m2/ 
s) 

Diffusion 
exponent, n 

Transport 
mechanism 

85% PD − 32 − 13 − 11 11.1 49 0.039 248.5 – – – – 
2% κ-car + 83% PD − 34 − 20 − 18 10.4 52 0.041 235.4 – – – – 
2% κ-car + 83% PD +50 mM 

KCl 
− 33 − 19 − 18 10.6 51 0.040 275.1 – – – – 

2% κ-car + 83% PD +100 
mM KCl 

− 31 − 17 − 14 10.2 53 0.042 276.7 – – – – 

2% κ-car + 83% PD +200 
mM KCl 

− 27 − 16 − 14 10.4 52 0.041 278.0 – – – – 

2% κ-car + 82% PD + 1% Cf − 32 − 4 − 3 10.6 51 0.044 271.2 9.1 4.64 ×
10− 6 

0.85 ± 0.04 Anomalous 

2% κ-car + 82% PD + 1% Cf 
+ 50 mM KCl 

− 32 0 1 10.6 51 0.042 318.2 14.5 1.34 ×
10− 6 

0.82 ± 0.02 Anomalous 

2% κ-car + 82% PD + 1% Cf 
+ 100 mM KCl 

− 30 5 6 10.6 51 0.042 319.9 23.0 1.78 ×
10− 8 

1.03 ± 0.04 Case II 

2% κ-car + 82% PD + 1% Cf 
+ 200 mM KCl 

− 24 10 11 10.6 51 0.041 333.7 24.7 4.05 ×
10− 9 

0.99 ± 0.03 Case II 

Average values with a standard deviation are reported for the diffusion exponent, n, throughout the experimental temperature range (− 20 to 30 ◦C). 
Values of the effective diffusion coefficient, Deff, are at 5 ◦C. 
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Fig. 4. (a) Cooling profiles of G’ (closed symbol) and G" (open symbol) for 85% PD (circle), 2% κ-car/83% PD (square) and 2% κ-car/82% PD/1% Cf (triangle) 
scanned at a rate of 1 ◦C/min, angular frequency of 1 rad/s and strain of 0.01%, and (b) Mechanical spectra of 2% κ-car/82% PD/1% Cf as a function of angular 
frequency for G′ at 17(− ), 13(◊), 9(▴), 5(+), 1(○), − 3(◆), − 7(x), − 11(Δ), − 15(●) arranged successively upwards. 

Fig. 5. WLF and modified Arrhenius fits of the shift factors (aT) within the glass transition region (open symbols) and glassy state (closed symbols) for (a) 2% κ-car/ 
83% PD (circle), 2% κ-car/83% PD/50 mM KCl (diamond), 2% κ-car/83% PD/100 mM KCl (triangle), 2% κ-car/83% PD/200 mM KCl (square), and (b) 2% κ-car/ 
82% PD/1% Cf (circle), 2% κ-car/82% PD/1% Cf/50 mM KCl (diamond), 2% κ-car/82% PD/1% Cf/100 mM KCl (triangle), 2% κ-car/82% PD/1% Cf/200 mM KCl 
(square), with the dash line showing the predictions of the mechanical glass transition temperature. 

Fig. 6. Caffeine release for 2% κ-car/82% PD as function of (a) time at 30 ◦C and (b) temperature after 120 min.  
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Therefore, the fundamental principle in the driving force of diffusion 
coefficient and fractional free volume in relation to the mechanical glass 
transition temperature, as developed from equation (6) for increasing 
temperature, should be also applicable to solvent infusion, leading in 
both cases to increasing fluctuations in local hole free volume. This 
approach can serve as the basis for further explorations in the design of 
model systems closer to industrial application. 

†Footnote: We have utilised the relationship between caffeine con-
centration and time (e.g. Fig. 6a) to argue for a zero-order reaction rate, 
with the gradient being the rate constant, k = dx/dt. This allows 
calculation of the so-called “spectroscopic shift factor”: log aT = log (ko/ 
k), where ko is the rate constant at the reference temperature, To. Thus, 
Ea caffeine can be estimated using the modified Arrhenius equation and 
outcomes are shown in Table 1; further discussion on the spectroscopic 
shift factor can be found in Paramita and Kasapis (2018). 

4. Conclusions 

We have designed high-solid biomaterials with vitrification proper-
ties over a wide range of temperatures by incorporating a natural 
polymer, κ-carrageenan, a non-caloric co-solute, polydextrose, and 
judicious additions of potassium counterions. The aim was to achieve 
controlled drug release via the effective entrapment of caffeine in these 
materials. Utilisation of the concept of normalized temperature differ-
ence variables demonstrated that the diffusion coefficients of caffeine 
for all systems can be reduced to a common pattern regardless of their 
physicochemical characteristics. Within the glass transition region of the 
polysaccharide/co-solute matrices at various levels of added potassium 
ions, a newly proposed equation for the caffeine diffusion coefficient in 
relation to the fractional free volume at the glass transition temperature 

yields the so-called coupling parameter. It was observed that potassium 
counterion stabilisation of the κ-carrageenan helices increases the 
decoupling effect between matrix motion and caffeine diffusion. It has 
been noted earlier in the literature that in this type of systems the me-
chanical glass transition temperature is distinct from its calorimetric 
counterpart, with the former being an accurate measure of structural 
relaxation within the region of α-dispersion. It appears that Tgm controls 
the mass transport of caffeine in the polysaccharide based matrix, an 
outcome which is congruent with data on the diffusion of nicotinic acid 
from protein (gelatin) matrices with distinct molecular weight distri-
butions (Ikasari et al., 2020), and bodes well for the design of delivery 
vehicles with advanced bio-functionality. 
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