EFFECT OF POLYVINYL ALCOHOL (PVA) ON GOLD NANOPARTICLES SYNTHESIZED USING TEAK LEAF EXTRACT (TECTONA GRANDIS)

by M Yasser

Submission date: 10-Sep-2022 09:40PM (UTC-0400)

Submission ID: 1896717541

File name: 5._IJCT_EFFECT_OF_POLYVINYL_ALCOHOL_PVA_ON_GOLD_2020.pdf (186.64K)

Word count: 1597 Character count: 9640

EFFECT OF POLYVINYL ALCOHOL (PVA) ON GOLD NANOPARTICLES SYNTHESIZED USING TEAK LEAF EXTRACT (TECTONA GRANDIS)

P-ISSN: 2715-8764

E-ISSN: 2716-1870

PENGARUH POLIVINIL ALKOHOL (PVA) PADA NANOPARTIKEL EMAS YANG DISINTESIS MENGGUNAKANEKSTRAK DAUN JATI (*Tectonagrandis*)

M. Yasser^{1*}, Setyo Erna Widiyanti²

^{1,2}Jurusan Teknik Kimia, Politeknik Negeri Ujung Pandang, Jalan Perintis Kemerdekaan KM 10, Makassar, Indonesia *E-mail : myasser@poliupg.ac.id

ABSTRACT

Gold nanoparticles have been successfully synthesized using teak leaf extract (*Tectona grandis*) and Polyvinyl Alcohol ligands (PVA). Gold nanoparticles are formed characterized by the formation of red wine and a maximum absorption at a wavelength of 500 nm - 600 nm. Growth and stability of the gold nanoparticles produced using UV-Vis Spectroscopy. During observation during 144 hours the stability of gold nanoparticles after 120 hours with a wavelength of about 568 nm - 568,5 nm.

Key Words : Gold Nanoparticles, Teak Leaf Extract, Polyvinyl Alcohol (PVA), Synthesis, UV-Vis Spectroscopy

ABSTRAK

Telah berhasil disintesis nanopartikel emas dengan menggunakan ekstrak daun jati (*Tectona grandis*) dan ligan Polivinil Alkohol (PVA). Terbentuknya Nanopartikel emas ditandai dengan terbentuknya warna merah anggur dan serapan pada panjang gelombang maksimum berkisar 500 nm – 600 nm. Pertumbuhan dan kestabilan nanopartikel emas yang dihasilkan diamati dengan menggunakan Spektroskopi UV-Vis. Hasil pengamatan selama 144 jam menggunakan Spektroskopi UV-Vis, yang diperoleh kestabilan nanopartikel emas yang pada waktu 120 jam yang ditandai dengan serapan panjang gelombang maksimum pada kisaran 568 nm– 568,5 nm.

Kata Kunci: Nanopartikel Emas, Ekstrak Daun Jati, Polivinil Alkohol (PVA), Spektroskopi UV-Vis, Sintesis

PENDAHULUAN

Nanopartikel merupakan partikel yang sangat halus dan memiliki ukuran dalam interal 1-100 nm karena memiliki. Nanopartikel tersebut dapat berupa logam, oksida logam,

semikonduktor, polimer, senyawa organik, protein atau enzim. Khususnya nanopartikel logam mulia telah diaplikasikan dalam berbagai bidang seperti bidang optik, elektronik, sensor biologi dan katalis [1].

Nanopartikel emas merupakan salah satu produk nanosains yang telah dikembangkan dan memiliki banyak manfaat tingkat kestabilan [2]. nanopartikel emas tinggi yang dibandingkan logam mulia lainnya dan aplikasi yang potensial dalam berbagai bidang sains dan teknologi mulai dari obat untuk optik, pelabelan biologis dan lain sebagainya [3]. Berbagai metode dan modifikasi telah dikembangkan dalam sintesis nanopartikel emas. Beberapa penelitian telah mengembangkan ekstrak tumbuhan sebagai bioreduktor dalam sintesis nanopartikel logam Pemanfaatan ekstrak tumbuhan memiliki kelebihan seperti ramah lingkungan, biaya rendah dan tidak memerlukan tekanan, energi dan temperatur yang tinggi serta tidak prlu bahan kimia yang beracun [3].

Singh, et al (2012) [3] yang memanfaatkan ektrak daun Dalbergia sissoo untuk mensintesis nanopartikel emas dan perak, Pawar, O., et,al (2016) [6] memanfaatkan apoenzim fosfatase untuk mensintesis nanopartikel perak, Jayaseelan, C., et al (2013) [7] memanfaatkan ekstrak Abelmoschus esculentus untuk mensintesis nanopartikel emas.

Beberapa penelitian juga telah memodifikasi nanopartikel emas menggunakan ligan [8][9]. Beberapa ligan mampu mempertahankan kestabilan nanopartikel terhadap waktu.

Daun jati (*Tectona grandis*) memiliki potensi untuk digunakan dalam sintesis nanopartikel emas karena memiliki kandungan flavonoid [10][8], namun modifikasi menggunakan ligan *Polivinyl Alcohol* (PVA) belum pernah dilakukan. PVA memiliki potensi sebagai ligan modifikator nanopartikel karena modifikator nanopartikel emas dapat berupa anion atau polimer yang diabsorbsi nanopartikel [9].

METODE PENELITIAN

Alat dan Bahan

Beberapa bahan yang digunakan adalah Logam Emas Mulia, akuabides, HCl 16 N (Merck), HNO₃ 12 N (Merck),

Polivinil Alkohol (PVA) (Sigma Aldrich), Aquabidest dan Daun Jati.

P-ISSN: 2715-8764

E-ISSN: 2716-1870

Alat-alat yang digunakan dalam penelitian adalah timbangan analitik, Spektrofotometer UV-Vis Shimadzu UV-2600, magnetic stirrer dan Hot Plate-Stirer.

Prosedur Kerja Ekstraksi Daun Jati

Daun Jati dipetik lalu dicuci hingga bersih dengan akuades dan dikeringkan hingga air cucian tiris. Selanjutnya, daun tersebut dipotong-potong seragam 2 cm x 2 cm dan ditimbang seberat 10 gram, lalu direbus dengan 50 mL akuabides dalam Erlenmeyer 500 mL. Selanjutnya, rebusan dibiarkan mendidih selama 5 menit. Setelah mencapai suhu ruang, air rebusan dituang dan disaring [2][8].

Pembuatan HAuCl₄

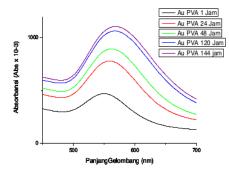
Emas sebanyak 1 gram dilarutkan dengan 8 mL akuaregia sambil dipanaskan. Pemanasan dilakukan hingga emas larut sempurna untuk menghasilkan gas nitrit, dan gas hidrogen. Setelah yang tersisa air dan larutan HAuCl₄ pemanasan dihentikan dan larutan HAuCl₄ diencerkan dalam labu ukur 1000 mL dengan aquabides [2].

<u>Sintesis dan Modifikasi Nanopartikel</u> Emas dengan PVA

Sintesis dan Modifikasi nanopartikel emas dengan Ligan PVA dilakukan dengan rasio volume dari Ekstrak daun jati : HAuCl₄ : PVA yaitu (1:10:3) 10:100:30 mL (v:v:v).

<u>Karakterisasi Nanopartikel Emas</u> menggunakan Spektroskopi UV-Vis

Nanopartikel emas diukur dengan spektroskopi Orion Aquamate 8000 UV Vis dengan panjang gelombang 200 hingga 700 nm [2][8][11].


HASIL DAN PEMBAHASAN

Nanopartikel emas dapat disintesis dengan menggunakan ekstrak tanaman sebagai reduktor logam emas menjadi nanopartikel emas. Pemanfaatan ekstrak tanaman dalam proses sintesis nanopartikel emas lebih ramah lingkungan jika dibandingkan menggunakan bahan kimia sebagai reduktornya [12].

Kandungan senyawa metabolit sekunder dalam dalam tanaman berupa senyawa fenolik seperti flavonoid, tannin dan antosianin [4][13]. Senyaga fenolik dalam ekstrak daun jati mengalami oksidasi dan Au3+ pada HAuCl4 yang mengalami reduksi menjadi Au⁰, sehingga dalam pembuatan nanopartikel emas reaksi yang terjadi merupakan reaksi redoks. Terbentuknya nanopartikel emas ditandai dengan perubahan warna dari larutan kuning emas menjadi warna Merah Anggur ketika sudah dikontakkan dengan ekstrak daun jati dan Ligan PVA.

Tabel 1. Hasil Pengukuran Nanopartikel Emas dengan Penambahan PVA

No	Waktu	λ Maks	Absorbansi
	(Jam)	(nm)	(Abs)
1	1	550	0,471
2	24	559	0,781
3	48	562	0,895
4	120	568	1,064
5	144	568,5	1,107

Gambar 1. Spektrum UV-Vis Nanopartikel Emas-Ekstrak Daun Jati dengan Penambahan PVA

Hasil penelitian ini menunjukkan bahwa telah terbentuk nanopartikel emas yang ditandai dengan terbentuknya panjang gelombang maksimum pada kisaran 500 – 600 nm [14]. Hasil penelitian

menunjukkan bahwa ketidakstabilan pada panjang gelombang maksimum yang dihasilkan pada berbagai waktu pengukuran. Panjang gelombang maksimum yang terbentuk pada kisaran 550 nm - 568,5 nm. Hal ini menunjukkan bahwa penggunaan PVA tidak cukup efektif untuk mempertahankan ukuran nanopartikel emas yang disintesis dengan bantuan ekstrak daun jati. Kestabilan nanopartikel emas baru terlihat ketika memasuki waktu 120 jam ke 144 jam yang ditandai pergeseran panjang gelombang dari 568 nm ke 568,5 nm.

P-ISSN: 2715-8764

E-ISSN: 2716-1870

KESIMPULAN

Telah berhasil disintesis nanopartikel emas memanfaatkan ekstrak daun jati dan Polivinyl Alcohol (PVA) sebagai ligan. Panjang gelombang maksimum yang dihasilkan pada pengukuran 5 waktu yang berbeda menunjukkan ketidakstabilan yang ditandai dihasilkannya range panjang gelombang maksimum berkisar antara 550 – 568,5 nm. Kestabilan nanopartikel emas baru terlihat ketika memasuki waktu 120 jam ke 144 jam yang ditandai pergeseran panjang gelombang dari 568 nm ke 568,5 nm.

UCAPAN TERIMA KASIH

Ucapan terima kasih diberikan kepada Kementerian Riset Teknologi dan Pendidikan Tinggi (Kemenristekdikti) yang telah membiayai penelitian ini.

DAFTAR PUSTAKA

- [1] M. A. Awad, K. M. O. Ortashi, A. A. Hendi, N. E. Eisa, and F. Al-abbas, "Novel Green Synthesis and Characterization of Nanopolymer Porous Gold Oxide Nanoparticles," *Trop. J. Pharm. Res.*, vol. 14, no. 10, pp. 1763–1768, 2015.
- [2] M. Yasser and S. E. Widiyanti, "Pengaruh Waktu terhadap Kestabilan Nanopartikel Emas yang Disintesis Menggunakan Ekstrak Air Daun Jati (Tectona Grandis) Termodifikasi Mercaptopropionic Acid (MPA)," INTEK J. Penelit., vol.

- 6, no. 1, pp. 43–45, 2019.
 C. Singh, R. K. Baboota, P. K. Naik, and H. Singh, "Biocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergia sissoo," Adv. Mater. Lett., vol. 3, no. 4, pp. 279–285, 2012.
- [4] V. A. Fabiani, F. Sutanti, D. Silvia, and M. A. Putri, "Green Synthesis Nanopartikel Perak Menggunakan Ekstrak Daun Pucuk Idat (Cratoxylum glaucum) Sebagai Bioreduktor," *Indones. J. Pure Appl. Chem.*, vol. 1, no. 2, p. 68, 2018.
- [5] R. Majumdar and B. G. Bag, "Terminalia arjuna bark extract mediated size controlled synthesis of polyshaped gold nanoparticles and its application in catalysis.," *Int. J. Res. Chem. Environ.*, vol. 2, no. 4, pp. 338–342, 2012.
- [6] O. Pawar, N. Deshpande, S. Dagade, S. Waghmode, and P. Nigam Joshi, "Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima," J. Exp. Nanosci., vol. 11, no. 1, pp. 28–37, 2016.
- [7] C. Jayaseelan, R. Ramkumar, A. A. Rahuman, and P. Perumal, "Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity," *Ind. Crops Prod.*, vol. 45, pp. 423–429, 2013.
- [8] M. Yasser and S. E. Widiyanti, "Modifikasi dan Karakterisasi Nanopartikel Emas-Ekstrak Daun," Semin. Nas. Tellu Cappa, no. September 2017, 2017.
- [9] C. Caro, P. M., R. Klippstein, D. Pozo, and A. P., "Silver Nanoparticles: Sensing and Imaging Applications," Silver Nanoparticles, no. September 2017, 2010.
- [10] R. br Kembaran, S. Putriliniar, N. N. Maulana, K. Yulianto, and R. Ikono, "Ekstraksi dan Karakterisasi Serbuk Nano Pigmen dari Daun Tanaman Jati (Tectona Grandis Linn F)," Kim. Kemasan, vol. 36, no. 1, pp. 191–196, 2013.
- [11] M. Yasser, M. Rafi, W. T. Wahyuni,

S. E. Widiyanti, and A. M. I. A. Asfar, "Total Phenolic Content and Antioxidant Activities of Buni Fruit (Antidesma bunius L.) In Moncongloe Maros District Extracted using Ultrasound-Assisted Extraction," Rasayan J. Chem., vol. 13, no. 1, pp. 684–689, 2020

P-ISSN: 2715-8764

E-ISSN: 2716-1870

- [12] S. Ahmed, Annu, S. Ikram, and S. Yudha, "Biosynthesis of gold nanoparticles: A green approach," J. Photochem. Photobiol. B Biol., vol. 161, pp. 141–153, 2016.
- [13] S. Iravani, "Green Chemistry Green synthesis of metal nanoparticles using plants," *Green Chem.*, vol. 2011, no. 13, pp. 2638–2650, 2011.
- [14] M. A. Amiruddin and T. Taufikurrohmah, "Sintesis Dan Karakterisasi Nanopartikel Emas Menggunakan Matriks Bentonit Sebagai Material Peredam Radikal Bebas Dalam Kosmetik," UNESA J. Chem., vol. 2, no. 1, pp. 68–75, 2013.

EFFECT OF POLYVINYL ALCOHOL (PVA) ON GOLD NANOPARTICLES SYNTHESIZED USING TEAK LEAF EXTRACT (TECTONA GRANDIS)

ORIGIN	ALITY REPORT				
8 SIMIL	% ARITY INDEX	5% INTERNET SOURCES	5% PUBLICATIONS	1% STUDENT PAR	PERS
PRIMAR	RY SOURCES				
1	dokume Internet Sour	· · · · · · · · · · · · · · · · · · ·			2%
2	Yekinni Sikiru et nanoted treatme green s	een Sikiru, O.J. A Kolawole Sanus t al. "A compreh thnology applica ent a case study ynthesis", Journa al Engineering, 2	i, Yesirat Adek ensive review ition in waster of metal-base al of Environm	oukola on water ed using	2%
3	download.garuda.ristekdikti.go.id Internet Source				2%
4	pdfs.semanticscholar.org Internet Source				
5	Potassion Mechar Confere	mad Arsyad. "So um Permangana nical Properties o ence Series: Mate ering, 2019	ite Treatment of Coconut Fib	on ers", IOP	1 %

Exclude quotes Off Exclude matches < 15 words

Exclude bibliography On