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Abstract—Delta-Sigma (∆Σ) converters enable good in-band
signal to quantisation noise performance from coarse quantisers.
They achieve this by oversampling the signal and noise shaping
the quantisation noise such that it does not fall in the band of
interest. We apply ∆Σ techniques to the direct generation of RF
modulated signals using two (binary) or three level waveforms,
which are pulse width or pulse position modulated. The ∆Σ
filters operate on the baseband IQ signals and quantisation is
in the polar domain. Two-dimensional quantisation is required
and low complexity methods of achieving this are described and
compared. The complexity is more than halved if pulse widths
are restricted to an even or odd number of clock cycles. This
comes at a 5 dB loss in RF signal to noise performance.

I. INTRODUCTION

∆Σ techniques are most well known for their use in AD and
DA converter structures. These schemes are almost entirely
based on the conversion of low-pass signals. The best know
early application of ∆Σ DACs was for the CD player. Here
the sample rate was increased to reduce the (quantisation)
noise power spectral density and then shaped by a first order
network to further reduce the noise in the lower frequencies. In
this way high fidelity signal reproduction was possible from
DAC’s of reduced resolution. Fig 1 shows a block diagram
of a second order ∆Σ converter. The scheme is so effective
that DAC (quantiser) resolutions of 1-bit are possible if the
oversampling rate is high enough [1].

Recent research is now applying these techniques to band-
pass signals such as found in radio frequency transceivers [2].
There are number of challenges to developing such schemes.
First, the carrier frequency is of the same order as the sample
rate, secondly the bandwidth, error vector magnitude (EVM)
and spectral mask of any transmitted RF signal must be met,
and thirdly any design must be realisable in today’s silicon
technology. These three factors are all inter-related and form
a complex trade-off between performance, complexity and
energy consumption. We will concentrate on all digital up-
converter structures. The binary nature of their output removes
the need for analog components in the up-conversion chain.
Their outputs can be used directly to drive switched mode
power amplifiers (SMPA) (Class S or D) for high efficiency
operation [3]. There are three major approaches; bandpass ∆Σ
with carrier frequency, fc = f/4 [3]; Cartesian lowpass ∆Σs

Fig. 1. ∆Σ with a second-order noise shaping filter and quantiser, Q.

with quadrature up-conversion to fc = f/4 [4]; and Cartesian
filtered polar quantised conversion with fc =

f
(4∗2p) where the

integer p >= 0 [5]. The latter is the topic of this paper since
the factor p allows a trade-off between the RF oversampling
factor OSRRF and the fidelity of the quantiser. The polar
quantisation process requires complex two-dimentional(2-D)
processing in the IQ plane to identify the quantisation point
closest to the desired signal. The 2-D quantisation process
termed ‘joint’ quantisation can be simplified into two 1-D
processes by choosing a subset of the quantisation points
and changing the signals to polar prior to quantisation [6].
Two subsets are possible named ”even” and ”odd” and will
be described in section II as part of the overall architecture.
Section III will describe the more optimal ‘joint’ process and
a reduced complexity implementation is described in Section
IV.

II. CARTESIAN ∆Σ WITH POLAR QUANTISATION

Polar ∆Σ modulators were introduced by [7] to generate a
pulsed square wave waveform with a number of quantised
pulse widths and pulse positions to control amplitude and
phase respectively. It is important to limit the number of edges
in the waveform to two per period of the RF carrier, since each
edge represents power loss in any subsequent amplifying stage.
The polar ∆Σ did this by converting the digital baseband
signals to polar and then separately using ∆Σs to quantise
the amplitude and phase components. The problem with the
scheme was the high noise floor caused by passing the band-
width expanded polar signals through the ∆Σ filters. A partial
solution to the problem involved using Cartesian signals in the
∆Σ filters and polar signals in the quantiser. This improved
the spectral performance, but at the expense of a rectangular
to polar conversions inside the ∆Σ loop [8]. The structure is
shown in Fig 2. The quantised amplitude, V̂R, and phase theta,



Fig. 2. Cartesian ∆Σ with polar quantisation.

V̂Θ, that are fed back to the ∆Σ in Cartesian format and also
fed to the switching power amplifier in PWM/PPM format (see
Fig 3. for waveform examples). A bandpass filter at the output
of the SMPA reconstructs the sinusoidal RF signal. SMPA’s
can use binary input signals or tri-state input signals if a full
bridge structure is employed [9]. Tri-state will remove the even
harmonics.

III. ODD AND EVEN QUANTISATION

The number of quantisation levels is a function of the
OSRRF = fclock

fc
, or the number of clock cycles per period

of the RF carrier. The amplitude and phase of the switching
waveform can be updated in half period increments of the RF
carrier giving the sample rate of the ∆Σ filters, fs = 2fc

α
where α is a positive integer. Normally α is greater than one
because of the difficulty of making high speed ∆Σ filters.

The quantised amplitude levels are given by the amplitude
of the fundamental sinusoidal component of the repeating
pulsed waveform. There are NA = OSRRF

2 + 1 different pos-
sible amplitudes. For the OSRRF = 8 case these amplitudes
correspond to pulse widths of 0, 1, 2, 3 and 4 clock periods;
the latter two waveforms are shown in Fig 3. What is also
noticeable in Fig 3 is that a change in carrier amplitude can
be accompanied by a change in phase reference of half a clock
period or 2∗π/(2∗OSRRF ) radians. This makes quantisation
difficult and so previous work has restricted the amplitude
quantisation levels to pulse widths that are either an even
number of clock periods or an odd number of clock periods
because the phase reference does not then change [10]. In the
above example, this would give pulse widths of either 0,1,3
or 0,2,4 clock periods. The number of quantised amplitude
levels reduces to NA,odd = NA,even = OSRRF

4 + 1 and
there are NP = OSRRF quantised phases. The total number
of quantisation points is therefore NQ,odd = NQ,even =
OSRRF (

OSRRF

4 ) + 1.
The amplitude and phase quantisation points can be de-

scribed in the phase plane of the output carrier signal. The VI

and VQ signal from the ∆Σ filters form the input vector that is
be quantised in terms of amplitude and phase. The quantisation
points, P i, are the intersection of the NA amplitude rings with
the NP phase spokes. The input vector must be quantised
to the closest quantisation point. This is shown in Fig 4 for
odd (LHS) and for even (RHS) quantisation. In both cases the
phase and amplitude decisions are orthogonal, so the selection
of amplitude and phase of the closest quantisation point can
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Fig. 3. The PWM/PPM output for OSRRF = 8. Note, a two level signal
version would set the negative pulses to zero.

be independent.

IV. COMPLEXITY, SAMPLE RATE AND BANDWIDTH

All DSP systems scale with the sample rate and so the
higher the sample rate the larger the bandwidth of the noise
transfer function null. This is clearly desirable. ∆Σ systems
are a feedback system and so the maximum sample rate
(or minimum sample period) is set by the time it takes to
process all blocks in the feedback loop. This also includes the
quantiser. It is therefore important to make any quantisation
process fast.

The benefit of the Even or Odd pulse width schemes is
that they allow the independent quantisation of phase and
amplitude, such that these operations can be performed in
parallel, increasing speed and leading to the structure of Fig 2.
The downside is that only half the possible quantisation points
are used and this increases the quantiser error.

In Fig 2 quantisation is a three stage process, Cartesian
to polar conversion, followed by quantisation and then polar
to Cartesian conversion. The last stage is trivial because
quantisation has occurred and there are only a few states to
convert; hence a look-up-table is the best way to go. The first
and quantisation stages can be combined together. A possible
solution is to use a few iterations of an iterative algorithm
such as CORDIC.

The feedback structure of ∆Σ converters makes them par-
ticularly tolerant to errors in the quantiser decision regions.
This fact can be exploited to reduce the number of iterations
in the CORDIC algorithm and so reduce latency. Using pre-
computing techniques, it is possible to design a Cartesian ∆Σ
with polar quantiser such that it has almost no effect on the
maximum sample rate [5].

V. JOINT EVEN-ODD QUANTISATION

In order to get the benefit of the reduced quantisation
noise provided by the full family of quantisation points, we



Fig. 4. Quantisation points, P i, in the IQ plane (or phase plane), OSRRF =
8. LHS Odd, RHS Even.
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Fig. 5. Phase plane for joint quantisation.

shall now consider implementation options for Joint Even-
Odd quantisation shown in Fig 5. Intuitively speaking the
quantisation error vector will be approximately half that of
the Even or Odd modes considered separately. The number of
quantisation points for the Joint scheme is now: NQ,joint =
OSRRF ∗ (OSRRF

2 ) + 1.
We wish to choose the quantisation point closest to the input

vector (shown in blue). Two methods will be considered.

A. Exhaustive Search

This 2-D search involves calculating the squared distance
between the input vector and each quantisation point. The
quantisation point, P opt, with the minimum distance is chosen.
Five instructions are required to calculate the squared distance;
two subtractions two square operations and one summation.
Selecting the smallest of the outputs requires NQ,joint − 1
compare (subtract) operations. In terms of latency, we note
that all the squared distances can be calculated at once using
parallel hardware. The latency is dominated by the compare
operations.

Fig. 6. Proposed reduced complexity quantiser using the combined method.

 

450 500 550 600 650
-30

-20

-10

0

10

20

30

40

50

Frequency/2

S
p
e
c
tr

u
m

 (
d
B

)

odd

even

joint

64MHz offset

fc

Fig. 7. The simulated output spectrum of an OFDM signal with 10MHz
bandwidth. OSRRF = 32, with a second-order ∆Σ filter. The carrier is
offset from the nominal fc of 512MHz.

B. Combined Odd+ Even search

In this method the optimum Odd quantisation point is
chosen and the optimum Even quantisation point is chosen.
These two points are then compared to give the overall
optimum choice. The method allows the simpler 1-D searches
to be performed, similar to Fig 2, with a final single 2-D
squared magnitude comparison. The block diagram is shown
in Fig 6.

The Cartesian to Polar operation can be achieved by the
Cordic algorithm which approximately doubles the phase
accuracy every iteration. If there are OSRRF phases, then
the number of Cordic iterations should be ln2(OSRRF ) and
each iteration has an addition and a compare operation. The
amplitude accuracy converges faster and is not a problem.
Polar to Cartesian is a look-up-table operation and takes 1
instruction.

VI. RESULTS

Table 1 shows the breakdown of the number of operations
for the Odd/Even scheme and both the exhaustive and com-
binational quantisation schemes for the Joint scheme. The
Odd/Even schemes are dominated by the quantisation process,
with the polar-cartesian transforms only becoming significant



TABLE I
THE NUMBER OF ARITHMETIC OPERATIONS TO IMPLEMENT THE QUANTISER

Number of Operation

Scheme Equation
Q Model

OSR
4 8 16 32

Odd (or Even) Quantisation

Cartesian to Polar 2ln2(OSR) + 3 Odd/ Even 7 9 11 13

Quantise Amplitude and Quantise
Phase

(Np +NA) = ( 5OSR
4

) + 1 Odd/ Even 6 11 21 41

Polar to Cartesian (LUT) 1 Odd/ Even 1 1 1 1

Total 2ln2(OSR) + ( 5OSR
4

)+5 Odd/ Even 14 21 33 55

Joint Quantisation, Method-1 : exhaustive search

Select closest constellation point NQ,joint − 1 Joint 8 32 128 512

Minimize arg
i

min(∥R − P i
all∥)

i=1;NQ,joint

5NQ,joint = 5(OSR2

2
) + 1) Joint 45 165 645 2565

Total 6(OSR2

2
+ 1)− 1 Joint 53 197 773 3077

Joint Quantisation, Method-2 : combination odd+even

Cartesian to Polar 2ln2(OSR) + 3 Odd& Even 7 9 11 13

Quantise Amplitude and Quantise
Phase (number includes both Odd
and Even)

2(Np +NA) = 2( 5OSR
4

+ 1) Odd& Even 12 22 42 82

Polar to Cartesian (LUT) and se-
lection Odd or Even

2(1 + 5) + 1 = 13 Odd& Even 13 13 13 13

Total (2ln2(OSR) + 3) + 2( 5∗OSR
4

) + 1) + 13 Odd& Even 32 44 66 108

at the lowest OSR. For the Joint quantisation scheme the com-
bined method shows an increasing performance benefit over
the exhaustive search method as the OSRRF increases. The
benefit of Joint quantisation over Odd or Even quantisation is
clearly shown in Fig 7 where an across the band 5dB reduction
in the noise floor is apparent.

VII. CONCLUSION

∆Σ systems with 2-D polar quantisation can be used to
generate PWM/PPM signals suitable for radio frequency trans-
mission. These give good bandwidth and noise performance
when the ∆Σ filtering is performed in the IQ domain rather
than the polar domain. This makes quantisation more difficult
because Cartesian to polar conversion is required inside the
∆Σ feedback loop. The simplest quantisation occurs when
pulse widths are either restricted to either an even number of
clock cycles or an odd number of clock cycles. Quantisation
can then be done in amplitude and phase separately. Joint
quantisation, which uses both odd and even pulse widths
gives a 5 dB reduction in noise floor, but the complexity of
the quantiser more than doubles. The best quantiser for joint
quantisation does the quantisation of the Odd and Even points
separately and then chooses the closest to the input signal
vector.
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