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Abstract— This paper proposes a system identification pro-
cedure to approximate virtualized software system dynamics
within the framework of a Hammerstein-Wiener model. The
approach is an extension of the existing works where the
linear dynamics are estimated in Frequency Sampling Filter
(FSF) structure and the inverse static output nonlinearity are
synthesized in B-Spline curve functions. Furthermore, the issue
on parameter selection for B-spline model approximation is
addressed by using a data clustering method. An experimental
test-bed of virtualized software system is established to generate
experimental data which are used to confirm the performance
of the proposed approach. The identification results have shown
that the model efficacy is increased with the proposed approach
because the dimension of the nonlinear model is reduced
significantly while maintaining the desired accuracy.

I. INTRODUCTION

The increasing range of applications and services main-

tained by software systems motivates the growing popularity

of virtualization technology to intensify the computing per-

formance. In a virtualization framework, the pool of shared

resources needs to be attained dynamically by adjusting the

resources according to a user requirement while acknowledg-

ing the requirement of other users [1]. These issues can be

addressed efficiently on the basis of dynamic management

[2]. The effectiveness of dynamic management for resource

provisioning and performance properties between multiple

users in a shared resources application is highly determined

by the accuracy of model prediction. The relationship be-

tween resources provisioning and performance properties in

virtualized software systems consists of linear and nonlinear

dynamics [12]. However, most of existing literature pays

little attention to the nonlinear dynamics by only using linear

models in their control system designs, e.g. [3], [4].

One approach to nonlinear system identification is char-

acterized by synthesizing linear and static nonlinear ele-

ment [15]. This idea is evolved into Hammerstein-Wiener

model estimation which is a favorable and generic class for

nonlinear dynamic model estimation [11]. A wide range of

applications have implemented Hammerstein-Wiener model

structure because the method profoundly presents good per-

formance in system identification for processes with sig-

nificant nonlinearity issues [10], [8]. In the Hammerstein-

Wiener structure, the nonlinear dynamics could be modeled
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in its inversion form [5]. The purpose of capturing nonlinear

dynamics in term of its inversion is to readily compensate

the nonlinearity dynamics [7], [16] in the later applications.

The nonlinear dynamics can be estimated accurately using

a B-Spline curve function. B-spline curve estimation has

been very well established in computer aided geometry

design [19]. Several studies have demonstrated satisfactory

results by using B-spline for nonlinear model estimation [17],

[9]. However, the accuracy of the model prediction is very

sensitive to the locations of knots especially when severe

local nonlinearities exist.

This paper contributes to the improvement of the previous

work in system identification of virtualized software system.

The linear model is represented by non-parametric Frequency

Sampling Filter (FSF) model and the inverse static nonlinear

model in a polynomial function or a B-Spline function.

Furthermore, the issue on parameter selection for B-spline

model approximation is addressed by using a data clustering

method which benefits for more precise knot points position.

This approach reduces the model complexity because the

parameters of a nonlinear model can be reduced significantly

leading to less control points for the curve. The estimation

of linear and nonlinear model parameters in Wiener block

is performed in a straightforward manner. An experimental

test-bed of virtualized software system is established to

generate real observational data which are used to confirm

the proposed approach performance.

The structure of the paper is outlined as follows. Section

2 covers the process description of the test-bed followed

by dynamic nonlinearities formulation in Section 3. The

algorithms for system identification and the identification

results are addressed in Section 4. Section 5 gives the

summary of the study as a conclusion.

II. PROCESS DESCRIPTION

For experimental purposes, an architecture of virtualized

software system is built on the scenario of multi-tier ap-

plications by implementing RUBiS. It is an online auction

site benchmark in a three tiers application of e-commerce

website which models the behavior of ebay.com. RUBiS has

been used in several existing studies in software system man-

agement (eg. [4], [14]). A common pool of server resources

is shared and each tier is hosted in a virtual machine. This

type of shared resources environment systems has engaged

both the embedded system and business domains due to its

efficiency of infrastructure utilization and maintenance cost

in data center. Figure 1 represents the structure of the test-

bed. It consists of a server, a database and a client simulator
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Fig. 1. Virtualized software system

machine which are connected in an isolated network. Server

is the shared infrastructure for two virtual machines (VMs)

which will utilize the resources proportionally. Therefore,

the server is functioning as the host machine while the two

VMs are the guest machines. For virtualization, hypervisor

is Xen2.6 is implemented to create VM by virtually parti-

tioning the host machine hardware and to manage guests

operating systems. This hypervisor comes with a credit-

based scheduler that gives advantages for resource allocation.

The scheduler dynamically allocates a certain share of CPU

capacity to each VM. In order to adjust this function, an

actuator was installed to feed the desired ratio of CPU to

the system. Since the system sends intensive client requests,

one CPU is dedicated only for the management of virtual

machine (dom0) while all virtual machines are pinned to one

CPU. This setting provides an efficiency for CPU capacity

provisioning among VMs. In addition, a sensor program

was attached to each VM to calculate the response time to

incoming requests. Also, Apache Httpd 2.2 server is installed

in all machines for customer application settings. The host

and guest machines are running on CentOS (Community

Enterprise operating system). RUBiS workload generator is

set up to simulate the workloads for each VM and the

database of RUBiS benchmark was deployed in the other

machine.

III. DYNAMIC NONLINEARITIES

In a shared resources environment with unpredictable

workload variations, the main challenge to manage per-

formance guarantees is to provide a relative management

scheme. To represent this scheme, input and output variables

are defined as the ratio values of the related variables from

two virtual machines. Capa(k) and Capb(k) are denoted as

the CPU allocation for V Ma and V Mb respectively, leading

to the total CPU capacity Captotal =Capa +Capb. It yields

the input equation to

u(k) =
Capa(k)
Capb(k)

(1)

The portion of resource sharing is in the percentage of total

CPU capacity where full CPU capacity equals to 100%.

Therefore, to prevent a shortage of resources when workload

requests suddenly increase in an unpredictable condition,

Fig. 2. Hammerstein-Wiener structure

CPU share is constrained to a minimum capacity. In this

experiment, Capa,min(k),Capb,min(k) = 20. So, it will ensure

that a certain share of CPU capacity is assigned for each

VM during runtime. On the output side, measured response

time is the output of this virtualized system which is ex-

pressed in y(k). RTa(k), RTb(k) represent response time to

the workloads of V Ma and V Mb respectively. Thus,

y(k) =
RTb(k)
RTa(k)

(2)

The setting of this input-output variables has been confirmed

by a survey study by [13] that it is widely used for software

system modeling because of its combination supporting the

performance monitoring and management on the basis of

relative guarantee management. Nonlinearities in the input

variable is caused by the relationship between variable

Capa((k)) and Capb((k)) in form of their ratio as in (1)

and the minimum bound for the input signal Capmin which

leads to static restriction of the operating points in the input

variable. For instance, if Captotal = 100 and Capmin = 20,

then the possible operating points configuration will be n =
61 points (u = u1,u2,u3, · · · ,un−1,un)

u =
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, . . . ,
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The order of these points are nonsymmetrical because the

deviation between the points are unequal. Similar dynamics

also appear in the output variable. If workloads variations

for V Ma and V Mb have a large difference, the RTa(k) and

RTb(k) will also have a large range of time differences. When

the response time V Ma is larger than the response time V Mb
(RTa(k) > RTb(k)), the output increases to a higher value.

But when (RTa(k) < RTb(k)), the y(k) value decreases in a

higher rate as well.

IV. SYSTEM IDENTIFICATION APPROACH

The estimation of system dynamics in Hammerstein-

Wiener model is comprised of a block-oriented model that

consists of a linear model and static nonlinearities on both

input and output elements (see Fig. 2). With this model, the

nonlinear block precedes the linear block in the Hammerstein

model and succeeds the linear block in the Wiener model.

A. Hammerstein block

Nonlinear model in the Hammerstein block is assigned to

get the relationship between input signal u and intermediate

input w in the form of inverse static nonlinearity function. To

estimate the inverse static input nonlinearity, the operating
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points u(k) are transformed to equally spaced operating

points. This approach has been used in the authors’ previous

studies [12], [18]. The technique was formulated by defining

an intermediate variable w where wmin ≤ w≤ wmax. To have

an equally spaced operating points, a fixed deviation is

determined by δw =
wmax−wmin

n−1
.

w = w1,w2,w3, · · · ,wn

where w1 = wmin,w2 = w1 + δw,w3 = w2 + δw and wn =
wmax. Then, the respective operating points of input ui
are mapped to the wi points. Furthermore, the relationship

between data pairs from the mapping is approximated in in-

verse static nonlinear function u(i) = f−1(w(i)). This inverse

function is expressed in the polynomial form:

u(i) = β0 +β1w(i)+β2w(i)2 + · · ·+βmw(i)m (3)

Then the coefficient vector of inverse static input nonlinearity

is estimated by the least squares method, leading to

Θ̂ = (ΦT Φ)−1(ΦTU) (4)

where the parameter vector θ =
[
β0 β1 · · · βm

]T
and

data vector φ(i) =
[
1 w(i) · · · w(i)m]T

B. Wiener block

The linear model is represented in the Frequency Sampling

Filters (FSF) model. Moreover, the identification of nonlinear

model will be delivered in terms of inverse static nonlinear-

ities by assigning B-spline curve function for inverse static

nonlinear model estimation.

1) Frequency Sampling Filter: FSF model represents the

model in fewer parameters than an FIR model and the

estimation is unbiased and reliable to reduce noise effect

[20]. Additionally, FSF model estimation only requires prior

knowledge about settling time of the process with the as-

sumption that the system is stable, linear, and time-invariant

process. The transfer function of FSF model is

G(z) =

M−1
2

∑
l=−M−1

2

G(e jωl )Hl(z) (5)

where

Hl(z) =
1

M
1− z−M

1− e jωl z−1
(6)

where M is filter order chosen as an odd integer number.

Following the finding of [20], the FSF function can be

formulated in a reduced mth-order FSF model which is

written as follows

G(z) =

m−1
2

∑
l=−m−1

2

G(e jωl )Hl(z) (7)

Equation (7) is associated as the j-th FSF with ωl =
2πl
M as

the center frequency in l = 0,±1,±2, · · · ,±m−1
2 . m is the

effective order which indicates the significant parameters of

FSF model and M represents the order of individual FSF

filters corresponding to the process settling time M = Ts/δ t

and δ t is a sampling interval. m is odd number and much

smaller than M. The input and output variable for linear

model in this study are w(k) and x(k) respectively. Therefore,

the FSF model can be approximated as

x(k) =

m−1
2

∑
l=−m−1

2

G(e jωl ) fl(k) (8)

where fl(k) = Hl(z)w(k).
2) B-Spline: The estimation of B-spline function is mo-

tivated by initial finding of [6] which is widely known

as ”de-Boor” algorithm. The initial stage in a B-spline

approximation is to select a set of parameters along data

points range. These points will be used to calculate the

knot vector intervals (knot spans). The intervals will direct

the control points to form the curve. Therefore, this step

determines the shape of the curve because inappropriate

selection of parameters could lead to an unpredictable curve

estimation [9]. Nonuniform parameters are implemented to

provide flexibility for mapping parameters into curve by

changing the knot spans length. In the B-spline form, a curve

is represented by combining control points and the basis

functions. A parametric B-spline curve B(q) is defined by

B(q) =
n

∑
i=0

Ni,p(q)Pi (9)

where Ni,p(q) are the normalized pth-degree basis func-

tion of B-Spline defined on a knot vector Q =[
Q0,Q1, · · · ,Qs+p,Qs+p+1

]
and Pi (i = 0, · · · ,s) are control

points. In this study, nonperiodic knot vector is used which is

characterized by the multiplicity at the first and the last knots.

Suppose s + 1 parameters are selected from observational

data T = {t0, t1, . . . , ts} and the B-spline degree is p, there

will be r+ 1 knots to be used in the curve modeling using

(10), where r = s+ p+1.

Q0 = Q1 = · · ·= Qp = tmin (10a)

Q j+p =
1

p

j+p−1

∑
i= j

ti f or j = 1,2, . . . ,s− p (10b)

Qr−p = Qr−p+1 = · · ·= Qr = tmax (10c)

Basis function values for B-spline curve with degree p are

calculated using (11) and (12).

Ni,0(q) =

{
1 if Qi ≤ q < Qi+1

0 otherwise
(11)

Ni,p(q) =
q−Qi

Qi+p−Qi
Ni,p−1(q)

+
Qi+p+1−q

Qi+p+1−Qi+1
Ni+1,p−1(q)

(12)

Ni,p is a composite curve of degree p polynomials with

joining points in knot span [Qi,Qi+p+1]. The representative

formulation of B-spline curve B(y(k)) using y(k) as the input

and x(k) as the output (see Figure 2) is

x(k) =
n

∑
i=0

Ni,p(y(k))Pi (13)
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3) Data Clustering: Data clustering is commenced from

a given representation of n objects and based on quantita-

tive comparison in similarities or relationship, the objects

are partitioned into c smaller groups (clusters). The most

considerable algorithm in partitioning clustering is K-means

approach. In this study, K-means clustering is functioning

as a tool to automatically select the dominant points of the

data which is the center point of clustered data. The basic

idea of K-means is to find the clusters that minimize the

distance from data points in a cluster to the related cluster

center. K-means is commonly used in Euclidean distance as

the distance metric for the partitioning criterion. Suppose that

V = {v1,v2, · · · ,vn} as the set of data points to be analyzed.

This data will be partitioned into c sets R = {R1,R2, · · · ,Rc}
in regards to the squared Euclidean distance which is defined

as d(vi,μ j) = ||vi − μ j||2. Therefore, the goal is to find

c cluster centers μ = {μ1,μ2, · · · ,μc} which minimize the

objective function as expressed as

Jk−means = argmin
R

c

∑
j=1

∑
V∈[R j ]

||V −μ j||2 (14)

where μ j is calculated as the mean of points in S j set. The

algorithm requires two user-specified parameters: the number

of clusters c and initial setting for center point of each cluster

(centroid). The basic algorithm for k-means clustering are as

follows:

1) Select c points within the range of data set as initial

centroids of the clusters

2) For each data point, calculate the Euclidean distance to

all centroids and assign each data points to the closest

centroid to form c clusters

3) Recompute the centroid of the new clusters by calcu-

lating the mean value of all points within each clusters.

4) Repeat (2) and (3) until the result convergence

To identify inverse static output nonlinearity, the procedure

begins with a crude estimation where the models are esti-

mated using random parameters. This step is important to

have rough description of model characteristics. Then, K-

means performs data clustering and select the center point

based on the preference number of clusters. Since inverse

static output nonlinearity represents the relationship of y(k)
as input and x(k) as the output (x(k) = f (y(k))), data cluster-

ing and centroids calculation are based on data pairs of these

variables. In the estimation, parameter c which is the number

of required clusters is set equal to the number of required

parameters T = {t0, t1, . . . , ts} minus 2 points (s−2) since t0
is equal to the minimum value of data range and ts is equal to

the maximum point of data range. The results are c centroid

points in the form of data pairs of {yi,xi}. Therefore, the y
value is taken to represent the centroid value because it will

be used as a parameter to estimate the B-spline with respect

to the output variable y(k). The centroid points resulted from

this clustering process are used as a set of parameters for knot

vector generation. Then, the knot vector of B-spline curve

estimation is calculated using parameter T = {t0, t1, . . . , ts}
which is replaced by the centroid points μ = {μ1,μ2, · · · ,μc}.

This approach eliminates the pre-analysis effort that has to

be performed in order to define the appropriate knots.

4) Parameter Estimation: Parameter estimation for linear

model and inverse static nonlinearity in Wiener block is

performed in a straightforward manner. Process output can

be formulated by equating the linear model (8) and inverse

static nonlinear model (13). Using the assumption that the

inverse static function is a single-valued smooth function, it

is also assumed that P0 = 1 without lose of generality. The

output function is composed as

N0,p(ŷ(k)) =

m−1
2

∑
l=−m−1

2

G(e jωl ) fl(k)−N1,p(y(k))P1

−N2,p(y(k))P2−·· ·−Ni,p(y(k))Pi

(15)

To solve the prediction of model parameters, Equation (15)

is transformed to matrix notations where the model is com-

posed by parameter and regressor vector. Model parameter

vector is

Θ =
[
G(e j0) G(e jω1) · · · G(e

− jω m−1
2 ) P1 · · · Ps

]T

(16)

and for data samples k = 0,1, . . . ,n, the corresponding re-

gression vector as

φ(k)T =
[
A(t) B(t)

]
(17)

where

A(t) =
[

f0(k) f1(k) f−1(k) . . . f−m−1
2
(k)

]
B(t) =

[−N1,p(y(k)) −N2,p(y(k)) . . . −Ni,p(y(k))
]

The output vector is

Ŷ T =
[
N0,p(y(0)) N0,p(y(1)) · · · N0,p(y(n))

]
(18)

Parameters of Θ can be solved by least squares estimation.

V. IDENTIFICATION RESULTS

Data set for identification is from observed input and

output data using the experimental test-bed. 400 samples of

data pairs are generated using multi-level sinusoidal input

with minimum 100 requests/s workloads for each client class,

see Figure 3. Input variable settings are total available CPU

capacity Captotal = 100 and the minimum capacity allocation

for each VM is 20 CPU caps. The validation of estimated
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(a) Data Input
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(b) Data Output

Fig. 3. Data set for system identification

models is based on Mean Squared Error (MSE) value which
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provides the difference between predicted result over the true

value,

MSE =
1

n

n

∑
i=1

(Ŷi−Yi)
2 (19)

where Ŷ is the response of predicted model and Y is the

observed response.

A. Hammerstein Model

The inverse static input nonlinearity model u(k) =
f−1(w(k)) are approximated in polynomial function. w(k)
values are set arbitrarily by wmin = −15, wmax = 15 where

δw = 0.5. Using least squares method (4), the polynomial

functions is approximated in (20) with fitness value R2 = 0.99

and MSE value 0.000068. After identifying input nonlinear-

ity, the rest of the system will be estimated as a Wiener

system where

u(k) = 4.17e−7w(k)5 +9.34e−6w(k)4 +1.018e−4w(k)3

+0.0028w(k)2 +0.08w(k)+1.0045

(20)
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data mapping w to u
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Fig. 4. Inverse static input nonlinearity (u(k) = f−1w(k))

B. Wiener Model

In the Wiener model, the FSF model represents the linear

model and B-spline functions capture the inverse output

nonlinearity. For nonlinear model evaluation, the nonuniform

random parameters selection is compared to parameters

selection using clustering method.

1) Linear model using FSF structure: For model analysis

purpose, parameters M and m are presented to have a clear

understanding about their influence on the modeling accu-

racy. Curve parameters for knots distribution in nonlinear

model is set to 12 points. The prediction results are presented

in Table 1.

Table 1. The MSE values of model estimation in different

FSF parameter

M/m 30/9 30/13 30/17 70/9 70/13 70/17
MSE 0.0203 0.0183 0.0170 0.0234 0.0216 0.0208

It can be seen from the table that increasing parameter M
leads to less accuracy of prediction. On the other hand, the

variation of model order selection m shows that the higher

the model order, the better prediction will be gained. Based

on the MSE values, the best parameters are M = 30 and

m = 13. These parameters will be used on the next system

identification analysis in this study.

2) Inverse static output nonlinearity in B-spline function:
The degree of spline is set to 3 for cubic spline model

and knot vector is non-uniform. For parameter T selection,

two different approaches are examined, randomly selected

parameters and the parameters selected from the centroids

of clustered data.

Parameters from random selection: The sequence of pa-

rameters is selected randomly along data points of system

output (y). The number of parameters is varied (6,7,8,9)

to express the effect of the length of parameter set when

it is chosen randomly. It is inevitable that the predicted

model is indefinite since any changes in random values

leads to different estimated curve. For each estimation, the

identification procedures are repeated 5 times and selected

the best model with the lowest MSE value. It can be seen

from the model fitting in Figure 5 and the MSE value in Table

2 that more parameters give better prediction for the B-spline

curve. However, this fact raises the issue about redundancy

in parameters of the predicted model.
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(a) 6 curve parameters
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(b) 7 curve parameters
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(c) 8 curve parameters
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(d) 9 curve parameters

Fig. 5. Estimated B-spline model of inverse static output nonlinearity and
the position of nonuniform parameters from random selection

Table 2. The MSE values of model estimation with

non-uniform parameters from random selection

Model Order 6 7 8 9
MSE 0.0301 0.0281 0.0257 0.0239

Parameters from the centroids of clustered data: Results

in Figure 6 show that more points occupied the complex and
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dense area and fewer points on the flat area. This is the supe-

riority of the proposed method over basic parameter selection

method. More accurate models with clustering approach can

be achieved with less parameter (See Table 3). With only

6 parameters from clustering method, the error prediction

is less than the estimation with 9 parameters in random

selection method and no multiplicity issue appears. In spite

of the fact that increasing the number of cluster gives smaller

MSE value of the prediction, the estimated model will be

overfitting the real data which is unfavorable for control

system design. Therefore, the curve parameters should be

located properly to have an estimated model. Eventually, the

proposed approach to apply clustering method for proper

selection curve parameters is very constructive to address

these related objectives.
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(a) 6 curve parameters
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(b) 7 curve parameters
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(c) 8 curve parameters

0 2 4 6 8 10 12 14 16
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

y(k)

x(
k)

 

 

data mapping y to x
model fit

(d) 9 curve parameters

Fig. 6. Estimated B-spline model of inverse static output nonlinearity and
the position of nonuniform parameters from centroids of clustered data

Table 3. The MSE values of model estimation with

non-uniform parameters from the centroids of clustered data

Model Order 6 7 8 9
MSE 0.0236 0.0198 0.0061 0.0039

VI. CONCLUSIONS

In this paper, Hammerstein-Wiener structure has been used

for model estimation of virtualized software system in a

straightforward approach with significant improvement for

Wiener models, where the linear dynamic is represented in

FSF model and the nonlinear dynamic in B-Spline function.

The considerably improved results are exhibited from the

implementation of data clustering method in parameter selec-

tion to define dominant points as parameter for knot vector

calculation, where more parameters are located for higher

density region and complex curve. The proposed approach

contributes to the model parameter reduction and model

efficacy in nonlinear system identification for virtualized

software system.
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