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ABSTRACT
This paper proposes a system identification method for estimating virtualised software system dynamics
within the framework of a Hammerstein–Wiener model. Building on the authors’ previous work in identi-
fication and control of the software systems, the approach utilises frequency sampling filter structure to
describe the linear dynamics and B-spline curve functions for the inverse static output nonlinearity. Fur-
thermore, the issue on parameter selection for B-spline model approximation of scatter data is addressed
by using a data clusteringmethod. An experimental test-bed of virtualised software system is established to
generate real observational datawhich are used to confirm the performance of the proposed approach. The
identification results have shown that themodel efficacy is increased with the proposed approach because
the dimension of the nonlinear model can be significantly reduced while maintaining the desired accuracy.

1. Introduction
In the embedded system and enterprise domains, software
systems are the key instrument to maintain more efficient
and dynamic interactions across computing infrastructures.
The nature of software systems has emerged into a pattern
of utility service models because a shared resources environ-
ment is maintained in the system level to provide services for
multiple users (Andrzejak, Arlitt, & Rolia, 2002; Buyya, Yeo,
Venugopal, Broberg, & Brandic, 2009; Weiss, 2007). Accord-
ingly, useful access is given for end users to utilise the consol-
idated and configurable computing resources. Extensive devel-
opments in software system evoke the increasing popularity of
virtualisation technology as reliable framework for a high per-
formance computing generation. Virtualisation is a technique to
simplify the computing environment by means of partitioning
hardware platforms into individual units called VMs (Barham
et al., 2003). Each VM is independent and allowed to run on dif-
ferent operating systems or to use multiple applications, where
each of them is a duplication of the real system. As a result, soft-
ware systems could be constructed into agile and cost-efficient
structures, and their reliability would increase because their per-
formance quality and the complex resources management could
be optimised (Armbrust et al., 2009). Moreover, virtualisation
offers operational benefits for better resources utilisation and
performance isolationwhile providing features for resource pro-
visioning alternatives (Azeez et al., 2010). These benefits allow
the resources to be dynamically allocated among the VMs. Over
many approaches for resource provisioning, proportional shar-
ing is one of the suitable ways for resource allocation (Chenyang,
Abdelzaber, Stankovic, & Son, 2001; Patikirikorala, Wang,
Colman, & Han, 2011a, 2014). Its provisioning mechanism is
performed by specifying certain ratio of shares between VMs
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during runtime with regard to the targeted performance objec-
tives or specific preferences for Quality of Services (QoS) prop-
erties.

For years, there has been a growing attention on the research
about software system management. Hellerstein (2004),
Karamanolis, Karlsson, and Zhu (2005), and Patikirikorala,
Colman, Han, andWang (2012a) highlighted the importance of
model estimation and control system approach to performance
management and monitoring in software systems. A number of
studies have emphasised control system applications for relative
performance differentiation scheme, inwhich the resources pro-
visioning for each customer is manipulated to support different
classes or priority levels between customers. This scheme has
been investigated in the works by Lu, Abdelzaher, Lu, and Tao
(2002), Pan, Mu, Wu, and Yao (2008), Padala, Hou, Shin, and
Zhu (1996), Patikirikorala et al. (2011a), Patikirikorala, Wang,
Colman, and Han (2011b, 2012b), Patikirikorala, Wang, and
Colman (2011c) and Patikirikorala et al. (2014), implementing
feedback control to automate the resource and performance
management. In applying such dynamic control systems, the
main objective is to manipulate the system management with
respect to the reference conditions, where input variables are
adjusted until the measured outputs converge to the desired
values in the presence of disturbances during the runtime.
Whereas, it has been analyzed by Lu, Abdelzaher, Stankovic,
and Son (2001) and from a survey by Patikirikorala, Colman,
Han, and Wang (2012a) that in an application of relative guar-
antee management, nonlinearities exist in the relationship of
input and output parameters.

In order to employ control engineering techniques in vir-
tualised software systems, their characteristics including both
linear and nonlinear dynamics should be identified. However,
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Figure . Hammerstein–Wiener structure.

the majority of the existing results has not considered
the nonlinear dynamics of of shared resources systems.
Researchers have demonstrated studies for automated manage-
ment of resources and QoS performance using linear models
(Karlsson, Zhu,&Karamanolis, 2005;Kusic&Kandasamy, 2006;
Lu, Abdelzaher, Lu, Sha, & Liu, 2003; Lu, Saxena, & Abdelza-
her, 2001; Lu et al., 2002; Padala et al., 2007; Pan et al., 2008;
Wu, Lilja, & Bai, 2005). The argument behind the decision to
use linear models only was the common assumption that lin-
ear models can be estimated with less computational efforts and
they are often considered sufficient to be used as the basis for
controller design in an operating region. However, further stud-
ies by Zhu, Wang, and Singhal (2006), Padala, Hou, Shin, and
Zhu (2010) and Patikirikorala et al. (2011a) have observed the
nonlinear relationship between resources provisioning and per-
formance properties. Ignoring the nonlinear characteristics of a
software system may degrade the management quality because
its overall behaviour is not captured as a whole. To overcome
these limitations, nonlinear system identification is proposed for
two reasons: (1) to obtain propermodels to characterise both the
static and dynamic input–output relationships, and (2) to iden-
tify the nonlinear properties of the models in a wide range of
operating points.

Billings and Fakhouri (1979, 1982) asserted that system iden-
tification of nonlinear systems can be characterised by syn-
thesising linear and static nonlinear elements. Their original
idea has evolved into Hammerstein–Wiener model estimation
which becomes a favourable and generic approach for nonlinear
dynamical model estimation (Ljung, 1999). In Hammerstein–
Wiener, the nonlinear dynamic components (as shown in
Figure 1) could be modelled in its inversion form Pajunen
(1992), Kalafatis, Wang, and Cluett (1997), and Hong and
Mitchell (2006). The purpose of capturing nonlinear dynamic
in terms of its inversion is for easy compensation to the non-
linearity dynamics (Bloemen, Van den Boom, & Verbruggen,
2000; Fruzzetti, Palazoglu, &McDonald, 1997;Hong,Mitchell &
Chen, 2012). In a recent research by Patikirikorala et al. (2011a,
2014), dynamics of shared resources environment are identified
in the structure of Hammerstein–Wiener models. However, the
estimation was implemented in a two-steps procedure which
required extra efforts and a complex estimation.

This paper aims to improve system identification for linear
and nonlinear dynamics of virtualised software systems. Build-
ing on the authors’ previous work in identification and con-
trol, the improved approach utilises frequency sampling filter
(FSF) structure to describe the linear dynamics and B-spline
curve functions for the inverse static output nonlinearity. Fur-
thermore, the issue on parameter selection for B-spline model

Figure . Virtualised software system.

approximation of scatter data is addressed by using a data clus-
tering method. Another advancement in the current work is the
use of K-means clustering method as an algorithm for curve
parameters selection which provides more precise knot points
position. With the proposed approach, the estimation of linear
and nonlinear model parameters is performed in a straightfor-
ward manner. A new experimental test-bed of virtualised soft-
ware system is established to generate real observational data
which are used to confirm the performance of the proposed
approach.

The structure of the paper is organised as follows.
Section 2 covers the process description of virtualised soft-
ware system test-bed. Section 3 addresses the characteristics
of relative performance management. Section 4 formulates the
proposed identification algorithms. The identification results
using experimental data from the test-bed are demonstrated in
Section 5. Finally, the results are concluded in Section 6.

2. Process description
It is known that the environment of software system is com-
plex and lack of first principal or prior knowledge about the
real physical process (Padala et al., 2010). For experimental pur-
pose, an architecture of virtualised software system is built on
the scenario ofmultitier applications by implementing RUBiS. It
is an online auction site benchmark in three tiers application of
e-commerce website which models the behaviour of ebay.com.
RUBiS has been used in several existing studies about software
systemmanagement (e.g. Padala et al., 2007; Patikirikorala et al.,
2014). In practice, a common pool of server resources is shared
and each tier is hosted in a virtual machine (VM). This type of
shared resources environment has been engaged to embedded
system and business domains due to the efficiency of infrastruc-
ture utilisation and maintenance cost in data centre.

The test-bed, as shown in Figure 2, consists of a server, a
database and a client workload simulator machine connected
in an isolated network. Server is the shared infrastructure for
two VMs which will utilise the resources proportionally. There-
fore, the server is functioning as the host machine while the two
VMs are the guest machines. For virtualisation, a software layer
called ‘hypervisor’ is implemented to createVMby virtually par-
titioning the hostmachine hardware and tomanage guests oper-
ating systems. In this study, the hypervisor is Xen2.6, an open
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Figure . Structure of relative performance management scheme.

source native hypervisor. This hypervisor comes with a credit-
based scheduler function that gives advantage for resource allo-
cation. The scheduler dynamically allocates a certain share of
CPU capacity to each VM. In order to adjust this function, an
actuator was installed to feed the desired ratio of CPU to the sys-
tem. Since the system sending intensive client requests, oneCPU
is dedicated only for the management of VM (dom0) while all
VMs are pinned to one CPU. This setting provides an efficiency
for CPU capacity provisioning among VMs. In addition, a sen-
sor program was attached to each VM to calculate the response
time of incoming requests. Also, Apache Httpd 2.2 server is
installed in all machines for customer application settings. The
host and guest machines are running on CentOS (Community
Enterprise operating system). RUBiS workload generator is set
up to simulate the workloads for each VM and the database of
RUBiS benchmark was deployed in the other machine.

3. Characteristics of relative performance
management
Dealing with a shared resources environment to achieve proper
functional services in runtime is a very complex task (Padala
et al., 2007; Patikirikorala et al., 2011a). The performance objec-
tive of the service provider is to maintain response time on
the reference levels or subject to the priority degree of the
clients/users. In order to achieve this objective, the available
resources need to be manipulated to give equivalent responses
for the incoming workloads from the clients. For such systems,
the performance stability is affected by three conditions. First,
unpredictable conditions or the change of system dynamics may
occur in the operating stages, including demand or workload
changes, which are most likely to be disturbances to the system.
Second, complex preferences for performance objective require
complicated procedures to manage the QoS metrics of a soft-
ware system, such as response time. Third, resource demands
between each tier or consumer might be different and corre-
lated to each other. Thus, the pool of shared resources needs
to be attained dynamically by adjusting the resources accord-
ing to a client requirement while acknowledging the require-
ment of other users. These issues can be addressed efficiently on
the basis of dynamic resourcesmanagement. However, the effec-
tiveness of dynamic resources management between multiple
users in a shared environment ismainly determined by the accu-
racy of the model prediction. In a resources management, the
average response time for each client is maintained under vary-
ing workloads based on absolute or relative guarantee scheme.
The key point that distinguishes a relative scheme from a abso-
lute scheme is the existence of relative relationship between the

clients. This relative relationship can be captured by their ratio
value for convenience of analysis. From control system point of
view, this means that a single input and single output system
can be configured for a case of two clients scenario. In the same
spirit, Lu et al. (2003) and Patikirikorala et al. (2011a) confirmed
that relative performancemanagement scheme is very useful for
service differentiation on overloaded systems.

A relative management scheme specifies the relative impor-
tance of clients and controls the ratio of QoS parameters to the
desired levels. Each consecutive client is paired and the ratios are
computed between the pairs. In this paper, the CPU capacity is
allocated to dynamically manage the response time as the con-
trolled variable of QoS parameter. Figure 3 illustrates the input
and output variables in the framework of a relative management
objectives for I client classes.

3.1. Input and output variables
The input and output data pairs for system identification are
generated from the test-bed with an experiment of two VMs
(VMa and VMb). To represent relative management scheme,
input and output variables are defined as the ratio values of
the related variables from two VMs. The input parameter is
resource allocation ratio representing the CPU capacity entitle-
ment for VMa over the entitlement for VMb while the output
is the response time ratio from the time measurement of each
VMs to respond to the workload requests. These parameters are
the main metrics which indicate the end-users experience. This
selection of input–output variables has been confirmed in a sur-
vey study by Patikirikorala, Colman, Han, and Wang (2012a)
for being widely used for software system modelling. In addi-
tion,when adaptive control approacheswill be implemented, the
input should be persistently excited to guarantee the parameters
convergence to their true value (Astrom & Wittenmark, 1995;
Ioannou & Sun, 1996; Ljung, 1999).

The characteristics of input and output variables of this test-
bed are depicted in Figure 4. It shows the relationship between
CPU allocation and response time to confirm the presence of
nonlinear dynamics in virtualised software system. Further-
more, the incoming workloads changes affect the performance
of system dynamics, so that these will be considered as distur-
bances to the system on further study for control system exper-
imentation.

In a two VMs scenario, when VMb requires higher prior-
ity than VMa, the response time of VMb needs to be main-
tained faster than the response time of VMa. In order to achieve
this objective, the CPU capacity allocation for VMb should be
larger than the allocation for VMa. It is considered that at least
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Figure . Characteristic of virtualised software systems testbed, (a) Average response time of each VM for workload constant , (b) Average response time ratio of the
VMs for different workloads, (c) and (d) Input and Output signal for constant workloads .

one request to a VM arrives from client in each sampling time.
Capa(k), Capb(k) are denoted as the CPU allocations VMa and
VMb respectively that make the total CPU capacity Captotal =
Capa + Capb. It yields the input equation to

u(k) = Capa(k)
Capb(k)

(1)

The portion of resource sharing is in the percentage of total
CPU capacity where full CPU capacity equals to 100%. There-
fore, to prevent a shortage of resources when workload requests
suddenly increase in unpredictable conditions, CPU share
is constrained to a minimum capacity. In this experiment,
Capa, min(k), Capb, min(k) = 20. So, it will ensure that a certain
share of CPU capacity is assigned for each VM during runtime.
On output side, measured response time is the output of this
virtualised system which is expressed in y(k) = RTa(k)

RTb(k)
. RTa(k),

RTb(k) represent response time to the workloads from VMa
and VMb, respectively. When the amount of CPU allocation
for a workload increases, the average response time decreases
due to more resources been provisioned to deal with the client’s
request. Consequently, variables Capa(k)

Capb(k)
and RTa(k)

RTb(k)
are inversely

proportional to each other which lead to the configuration of
a compatible input and output structure where the output is

modified to

y(k) = RTb(k)
RTa(k)

(2)

3.2. Dynamic nonlinearities
Nonlinearities in virtualised software systems have been char-
acterised by Patikirikorala et al. (2011a) which is the reference
of this study to formulate dynamic nonlinearities in the test-
bed. Nonlinear behaviours exist on input and output variables.
Nonlinearities in input variable are caused by the relationship
between variable Capa((k)) and Capb((k)) in the form of their
ratio as in Equation (1) and the minimum bound for the input
signal Capmin. The input signal is formulated as

Capa
Capb

= Captotal −Capb
Capb

= Captotal
Capb

− 1 (3)

This equation leads to static restriction of the operating points
in input variable. For instance, if Captotal = 100 and Capmin =
20, then the possible operating points configuration will be n =
61 points (u = u1, u2, u3,… , un − 1, un) with the following
sequence:

u = 20
80

,
21
79

, . . . ,
50
50

, . . . ,
79
21

,
80
20
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Figure . Description of input nonlinearity.

The order of these points is nonsymmetrical because the devia-
tions between these points are unequal. Therefore, if these points
are plotted, it is clearly shown that the range of the u points is
nonlinear, depicted in Figure 5.

Likewise in output dynamics, the nonlinearity issue exists in
the same way. Yet, the points could not be predefined because
the variable is response time which has to be measured dur-
ing runtime. The nonlinear characteristic in output led by the
output signal function in Equation (2) where the response time
value of VM is used in a division operation. If workload vari-
ations for VMa and VMb have large difference, the RTa(k) and
RTb(k) will also have large a range of time difference. Therefore,
y(k) = RTb(k)

RTa(k)
forms disproportionate values. When response

time VMa is bigger than response time VMb (RTa(k)> RTb(k)),
the output increases to high value. But when (RTa(k)< RTb(k)),
the y(k) value decreases in higher rate as well. For example,
a certain ratio of input applied to the system and the mea-
sured response time value for RTa(k) = 0.01(sec) and RTb(k) =
0.2(sec), then by using Equation (2), returns y(k)= 20.However,
if the input ratio is in reverse, the response time also changes to
RTa(k) = 0.2(sec) and RTb(k) = 0.1(sec), the y(k) will be 0.05.

4. Identification algorithm
Hammerstein–Wiener structure is a general scheme of nonlin-
ear models which has been used comprehensively in nonlin-
ear system identification. Parameter estimation of dynamic sys-
tems in Hammerstein–Wiener model is comprised of a form of
block-oriented model that consists of a linear model and non-
linear blocks on input and output elements, as illustrated in
Figure 1. The static nonlinearities are modelled in nonlinear
blocks and the rest of system dynamics are captured in the lin-
ear block.Wide range of applications has chosenHammerstein–
Wiener approach to approximate dynamic models because the
method profoundly presents good performance in system iden-
tification for process with significant nonlinearity issues (e.g.
Hong, Gong, & Chen, 2011; Jurado, 2006; Kalafatis, Arifin,
Wang, & Cluett, 1995; Zhu, 1999). This section addresses the
system identification algorithm of virtualised software system in
Hammerstein–Wiener structure with a straightforward estima-
tion for the Wiener model.

For identification purposes, two basic assumptions are made
to analyse the behaviour of virtualised software system. First,

the dynamic linear element is stable and second the static non-
linearity is continuous and single-valued in the range of input–
output data. According to Figure 1, the measured variables are
input u(k) and output y(k), while w(k) and x(k) are denoted as
the intermediate variables representing unmeasurable input and
output of linear element. In Hammerstein block, the nonlinear
dynamic of input signal is captured in the form of its inversion.
In Wiener blocks, the linear element is formulated in FSF func-
tion and the nonlinear element is in inverse static nonlinearity
of the output signal which is modelled in B-spline curve terms.
This approach will be advantageous for control system design
because by integrating the inverse static nonlinearities in input
and output elements, the presence of nonlinear dynamics is suf-
ficiently eliminated and the control system can be designed as a
linear system (Patikirikorala et al., 2011a).

4.1. Hammerstein block
One of the earliest applications of Hammerstein model identi-
fication was introduced by Billings and Fakhouri (1979) using
cross-correlation techniques to separate the linear element from
the nonlinear dynamics. To date, researcher used extended
approaches to approximate the nonlinear models, i.e. asymp-
totic method (Zhu, 2000), blind approach (Bai & Fu, 2002)
and B-spline neural network (Hong et al., 2012). Nonlinear
model in Hammerstein block is assigned to get the relationship
between input signal u and intermediate input w in the form of
inverse static nonlinearity function. The estimated model will
be employed as compensator for the nonlinear characteristic
in input element. As discussed in Section 3.3, nonlinear issue
occurs in input element because of uneven deviation of the oper-
ating points set. Patikirikorala et al. (2011a) have proposed a
simple technique to transform the operating points to equally
spaced operating points. This approach is adopted to estimate
the inverse static input nonlinearity in this paper. This technique
was formulated by defining an intermediate variable w where
wmin � w � wmax. To have an equally spaced operating points,
a fixed deviation is determined by δw = wmax−wmin

n−1 . Therefore,
the range of operating points for intermediate variable w is
selected as a sequence of w = w1,w2,w3, · · · ,wn, where w1 =
wmin, w2 = w1 + δw, w3 = w2 + δw and wn = wmax. Then,
the respective operating points of input u are mapped to the w
points. From system identification point of view, the intermedi-
ate variable w becomes the input signal to the Wiener system in
the next stage of system identification. However, for the future
control applications, it is advantageous to find the relationship
between input signal u and intermediate variable w. The rela-
tionship between data pairs from the mapping is approximated
in inverse static input nonlinear function (u = f−1(w)). This
inverse function is expressed in polynomial form

u(k) = β0 + β1w(k) + β2w(k)2 + · · · + βmw(k)m = φni(k)θni
(4)

where the coefficient parameter vector θni = [ β0 β1 · · · βm ]T and
data vector φni(k) = [ 1 w(k) · · · w(k)m ]. The model coefficients
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are estimated by least squares method:

θ̂ni =
( n∑

k=1

φni(k)Tφni(k)

)−1 n∑
k=1

φni(k)Tu(k) (5)

4.2. Wiener block
Different submodel structures have been broadly studied in the
approximation ofWiener system. Numerous schemes have been
implemented in both parametric model (Bai, 1998; Kalafatis
et al., 1995, 1997) and non-parametric model (Greblicki, 1992).
Pajunen (1992) suggested to use transfer function for the lin-
ear system and B-spline for the nonlinearity. Further study in
Voros (1995) used transfer function for linear system and esti-
mated the nonlinearity in polynomial form. Another approach
by Kalafatis et al. (1997) used FSF terms for linear model and
power series for the nonlinear element. InHughes andWestwick
(2005), Hong et al. (2012), Hong,Mitchell, and Chen (2013) and
Zhu (1999), B-spline curve function has been utilised to identify
the nonlinearity of a system dynamic in Wiener modelling.

Considering the block structure shown in Figure 1, Wiener
block is composed of linearmodel followed by nonlinearmodel.
The linear model is represented in FSF model. Moreover, the
identification of nonlinear model will be delivered in term of
inverse static nonlinearities by assigning B-spline curve func-
tion as the predicted nonlinear model.

... Frequency sampling filter
FSF model is a frequency domain model which is established
from the transformation of a time domain finite impulse
response (FIR) model. It is first introduced by Bitmead and
Anderson (1981) in the area of filter design. Afterwards, the
extensive implementations of FSF model for system identifi-
cation are successfully developed by Wang and Cluett (1994,
1997). These existing works confirmed that an FSF model can
represent the model in fewer parameters than an FIR model.
In addition, the estimation is unbiased and reliable to reduce
noise effect, for an input only model. FSF model estimation
only requires prior knowledge about settling time of the process
with an assumption that the system is stable, linear and time-
invariant process. The basic idea of FSF model is summarised
below for the completion of this paper and details are referred to
Wang and Cluett (2000). Transfer function of FIR is given by

G(z) =
M−1∑
i=0

hiz−i (6)

where M is filter order and the impulse response hi is defined
for 0 � i � M − 1. AssumingM as an odd integer number, the
discrete frequency response of the process can be corresponded
to its impulse response coefficient as

hi = 1
M

M−1
2∑

l=−M−1
2

G(e j
2π l
M )e j

2π li
M (7)

Substituting Equation (7) to Equation (6) produces

G(z) =
M−1∑
i=0

1
M

M−1
2∑

l=−M−1
2

G(e j
2π l
M )e j

2π li
M z−i (8)

By rearranging positions of elements in Equation (8), another
formulation can be extracted as

M−1∑
i=0

e j
2π li
M z−i = 1 − z−M

1 − e j 2π lM z−1
(9)

which leads to the transfer function of FSF model:

G(z) =
M−1
2∑

l=−M−1
2

G(e j
2π l
M )

1
M

1 − z−M

1 − e j 2π lM z−1
(10)

Equation (10) can be simply written as

G(z) =
M−1
2∑

l=−M−1
2

G(e jωl )Hl (z) (11)

Hl (z) = 1
M

1 − z−M

1 − e jωl z−1 (12)

Following the finding of Wang and Cluett (1997), the FSF
expression can be formulated in a reducedmth-order FSFmodel
which is written as follows:

G(z) =
m−1
2∑

l=− m−1
2

G(e jωl )Hl (z) (13)

Equation (13) is the reduced structure with ωl = 2π l
M as the cen-

tre frequency in l = 0,±1,±2, · · · ,±m−1
2 . m is the effective

order which indicates the significant parameters of FSF model
andM represents the order of individual FSF filters correspond-
ing to the process settling time M = Ts/�t and �t is a sam-
pling interval. m is odd number and much smaller than M. In
FSF model estimation, the coefficients of regressor vector are
generated by passing the input signal of the system through a
set of parallel structured narrow band-limited FSFs. Then, it is
weighted by the discrete frequency response corresponding to
the centre frequency. The estimated output is the noise-free pro-
cess output which is yielded from the summation of weighted
filter outputs.

In relation to the system identification of linear model for
Hammerstein–Wiener structure in Figure 1, the input and out-
put variables for linearmodel arew(k) and x(k), respectively. The
structure of FSF model estimation is described in Figure 6 and
the model formulation is given below:

x(k) = G(z)w(k) (14)
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Figure . Diagram of frequency sampling filters (Wang & Cluett, ).

Referring to Equation (13), the coefficients of FSF model can
be approximated as

x(k) =
m−1
2∑

l=− m−1
2

G(e jωl ) fl (k) (15)

where fl(k) = Hl(z)w(k).

... B-spline
The estimation of B-spline function is motivated by the initial
finding of DeBoor (1978) which is widely known as ‘de-Boor’
algorithm. B-spline curve estimation has been very well estab-
lished in computer aided geometry design (Farin, 1994; Piegl
& Tiller, 1987). It is a mathematical model which is commonly
applied to create and illustrate curves and surfaces for com-
puter graphics. B-spline is the most famous type of spline func-
tions to represent curve. Its signature is a B-spline function with
order d constructed by joining several piecewise polynomials of
d− 1 degree (p) and parameterised by a knot vector which con-
tains a set of points selected from the curve to break it into seg-
ments (Piegl & Tiller, 1995). The first stage in a B-spline approx-
imation is selecting a set of parameters along data points range.
These points will be used to calculate the knot vector intervals
(knot spans). The intervals will direct the control points to form
the curve. Therefore, this step determines the shape of the curve
because inappropriate selection of the parameters could lead to
an unpredictable curve estimation (Hong et al., 2013). There are
two basic ways to select these parameters, uniform and nonuni-
form parameters. It is uniform if they are equally spaced, other-
wise, it is called nonuniform. For nonlinear identification in this
study, nonuniform parameters are implemented because it pro-
vides flexibility for mapping parameters onto curve by changing
the knot spans length to accommodate the curve space. In con-
ventional practice, the number and position of knots are prede-
termined to produce a model as accurate as possible with less
control points. However, the accuracy of model prediction is
sensitive to the location of knots especially when severe local
nonlinearities exist.

In B-spline form, a curve is represented by combining control
points and the basis functions. A parametric B-spline curve B(q)
is defined as

B(q) =
s∑

i=0

Ni,p(q)Pi (16)

whereNi, p(q) are the normalised pth-degree basis function of B-
spline defined on a knot vectorQ= {Q0,Q1,… ,Qs + p,Qs + p + 1}
and Pi (i = 0,… , s) are the control points.

Knot vector can be constructed in two forms, periodic and
nonperiodic (Piegl & Tiller, 1995). In this study, nonperiodic
knot vector is used which is characterised by the multiplicity at
the first and the last knots. Suppose s + 1 parameters are selected
from the observational data set (T = {t0, t1,… , ts}) and the B-
spline degree is p, there will be r + 1 knots to be used in the curve
modelling, where r = s + p + 1. The first p + 1 knots are equal
to the minimum parameter while the last p + 1 knots are simi-
lar with the maximum parameter. In brief, to define a B-spline
curve in degree p, knot vector Q = {Q0, Q1,… , Qs + p, Qs + p + 1}
is computed using the formula:

Q0 = Q1 = . . . = Qp = tmin (17a)

Qj+p = 1
p

j+p−1∑
i= j

ti for j = 1, 2, . . . , s − p (17b)

Qr−p = Qr−p+1 = . . . = Qr = tmax (17c)

Basis function values for B-spline curve with degree p are cal-
culated using the following equations:

Ni,0(q) =
{
1 if Qi ≤ q < Qi+1
0 otherwise (18)

Ni,p(q) = q − Qi

Qi+p − Qi
Ni,p−1(q)

+ Qi+p+1 − q
Qi+p+1 − Qi+1

Ni+1,p−1(q) (19)
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Ni, p is a composite curve of degree p polynomial with join-
ing points in knot span [Qi,Qi + p + 1]. Therefore, before nonzero
basis functions for q value are calculated based on Equations
(18) and (19), the knot spanswhere q value lies should be known.

In association with nonlinear system identification for
Wiener model as structured in Figure 1, the nonlinear charac-
teristic will be estimated in the form of inverse static nonlinear
model. Variable input of the model is y(k) and the output is x(k)
which is the intermediate output variable. Thus, the representa-
tive formulation of B-spline curveB(y(k)) is in x(k) whichmakes
Equation (16) become

x(k) =
s∑

i=0

Ni,p(y(k))Pi (20)

Subsequently, to compute a point of B-spline curve at fixed input
values, the nonzero basis functions are multiplied with the cor-
responding control points.

x(k) = N0,p(y(k))P0 + N1,p(y(k))P1 + . . . + Ns,p(y(k))Ps
(21)

... Data clustering
Clustering is a process to divide a set of data points into non-
overlapping groups using information from the data which
reflect the relationship between all points (Anderberg, 1973;
Kaufman & Rousseeuw, 1990). Data clustering is also known
as cluster analysis which is very popular in scientific applica-
tions that involve analysis for structures with multivariate data.
The aim of data clustering is to determine the natural clas-
sification of a group of points or objects such that each data
point is exactly within one group. In practical explanation, clus-
tering is commenced from a given representation of n objects
and based on quantitative comparison in similarities or rela-
tionship, the objects are partitioned into c smaller groups (clus-
ters). Therefore, objects in the same group have high similar-
ities or comparable to one another while objects classified in
different groups are dissimilar and unrelated to the objects in
other groups.

Clustering algorithm is divided into two main classes: hier-
archical and partitional (Kaufman & Rousseeuw, 1990). Hier-
archical clustering algorithms can be executed in two ways,
agglomerative and divisive. The agglomerative method is start-
ing with each data point in its own cluster and consecutively
joining the most similar groups of clusters to move up the clus-
ter hierarchy. Divisive clustering starting by bringing together
all data points as one cluster and recursively dividing the clus-
ter into smaller clusters. Single-link and complete-link are the
most common algorithms in hierarchical approach. Differing
from hierarchical clustering algorithms, partitional clustering
algorithms discover all the clusters concurrently as partition of
the data. Themost considerable algorithm in partitional cluster-
ing is k-means. k-means is widely applied in the field of image
processing and pattern recognition. The ability to partitioning
data based on the density is very valuable to classify and sort out
scatter data. k-means has an extensive history since the method
introduced byMacQueen (1967). Even though k-meanswas first

proposed decades ago, it is still one of themost widely used algo-
rithms for clustering. Ease of implementation, simplicity, effi-
ciency and empirical success are the main reasons for its popu-
larity. Recent studies byAbraham,Cornillon,Matzner-Lber, and
Molinari (2003) and Tarpey (2007) implemented data cluster-
ing to find representative curve shapes over distinctive shapes
in functional dataset. Their works focus on clustering curves
based on the functional structures of the data where the cluster-
ingmethod is employed for curve segmentation. In this study, k-
means clustering is functioning as a tool to automatically select
the dominant points of the data which are the centre point of
clustered data. These points are utilised as the set of parameters
T = {t0, t1,… , ts} for knot vector calculation in B-spline model
estimation. Therefore, the positions of these points determine
the shape of the B-spline curve. To our best knowledge, this is the
first study to use k-means clustering to estimate the proper set of
parameters for knot vector distribution in B-spline curve model
identification. The partitioning procedure in k-means imple-
ments an uncomplicated approach to classify the given data set
through a certain number of c clusters. The basic idea of k-means
is to find the clusters thatminimise the distance fromdata values
in a cluster to the related cluster centre. k-means commonly uses
Euclidean distance as the distance metric for partitioning crite-
rion. Thismetric calculates the distance between a point and the
cluster centre. The Euclidean distance between two sets of data
{a1, a2,… , an} and {b1, b2,… , bn} is defined as

dai,bi =
√√√√ n∑

i=1

(ai − bi)2 (22)

Suppose that V = {v1, v2,… , vn} as the set of data points to
be analysed. This data set will be partitioned into c sets R= {R1,
R2,… , Rc} with respect to the squared Euclidean distance which
is defined as d(vi, μj) = ||vi − μj||2. Therefore, the goal is to
find c cluster centres μ = {μ1, μ2,… , μc} which minimise the
objective in the following form,

Jk−means = argminR
c∑

j=1

∑
V∈[Rj]

||V − μ j||2 (23)

where μj is calculated as the mean of points in Sj set.
The algorithm requires two user-specified parameters: num-

ber of clusters c and initial setting for centre point of each cluster
(centroid). The clustering result is highly dependent on the ini-
tialisation of centroids. Thus, the calculation is often performed
several times, with different initialisations of the centroids. The
basic algorithm for k-means clustering is as follows:

(1) Select c values within the range of data set as initial cen-
troids of the clusters.

(2) For each values, calculate the Euclidean distance to all
centroids and assign each data point to the closest cen-
troid to form c clusters.

(3) Recompute the centroid of new clusters by calculate the
mean value of all points within each clusters.

(4) Repeat (2) and (3) until the result converges.
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(a) Data points (b) Initial centroids (c) 1st clustering

(d) 2nd clustering (e) 3rd clustering

Figure . Example of k-means data clustering.

Figure 7 describes the clear picture of k-means algorithm.
It shows a set of data points to be clustered into three groups
(see Figure 7(a)). Initially, three centroids are chosen randomly
(see Figure 7(b)). The clustering process is started by comput-
ing the distance between each point to all centroids. Next, the
points are grouped based on their closest distance to the nearest
centroid (see Figure 7(c)). Subsequently, the mean values of
points in each cluster are calculated and used as the new cen-
troids. From this stage, the clustering process is repeated until
the position of centroids does not change(see Figure 7(e)).

To identify inverse static output nonlinearity in this study
case, the procedure begins with a crude estimation where the
models are estimated using random parameters. This step is
important to have rough description of model characteristics.
Then, k-means performs data clustering and selects the centre
point based on the preference number of clusters. Since inverse
static output nonlinearity represents the relationship of y(k) as
input and x(k) as the output (x(k) = f(y(k))), data clustering
and centroids calculation are based on data pairs of these vari-
ables. In the estimation, parameter c which is the number of
required clusters is set equal to the number of required parame-
ters T = {t0, t1,… , ts} minus 2 points (s − 2) since t0 is equal to
the minimum value of data range and ts is equal to the max-
imum point of data range. The results are c centroid points
in the form of data pairs of {yi, xi}. Therefore, the y value is
taken to represent the centroid value because it will be used
as parameter to estimate the B-spline in respect to the output
variable y(k).

The implementation of k-means data clustering causes
more centroids occur on the dense data curve and less cen-
troids on the flat curve. This objective will support the

properties of B-spline model estimation that requires more
parameters for higher density region in B-spline curve. The cen-
troid points resulted from this clustering process are used as a
set of parameters for knot vector generation. As explained in B-
spline section, knot vector of B-spline curve estimation is calcu-
lated using parameter T= {t0, t1,… , ts} which is replaced by the
centroid points μ = {μ1, μ2,… , μc}. This approach eliminates
the pre-analysis effort that has to be done to define the appro-
priate knots.

... Parameter estimation
Parameter estimation for linear model and inverse static non-
linearity in Wiener block is carried out in a straightforward
manner, by means that both of the models are approximated
simultaneously in one process output (ŷ(k)) equation. Process
output can be formulated by equating the linear model (15) and
inverse static nonlinear model (20). Using the assumption that
the inverse static function is a single-valued smooth function,
it is also assumed that P0 = 1 without lose of generality. The
output function is composed as

N0,p(ŷ(k)) =
m−1
2∑

l=− m−1
2

G(e jωl ) fl (k) − N1,p(y(k))P1

− N2,p(y(k))P2 − . . . − Ni,p(y(k))Pi (24)

where (i = 0,… , s). To solve the prediction of model parame-
ters, Equation (24) is transformed tomatrix notations where the
model is composed of parameter and regressor vector. Model
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parameter vector is

	 =
[
G(e j0) G(e jω1 ) G(e− jω1 ) · · · G(e jω m−1

2 )

G(e− jω m−1
2 ) P1 P2 · · · Pi

]T

(25)
and the corresponding regression vector as

φ(k) =
[
f0(k) f1(k) f−1(k) . . . f m−1

2
(k) f− m−1

2
(k) −N1,p(y(k)) −N2,p(y(k)) . . . −Ni,p(y(k))

]
(26)

for data samples k = 0, 1,… , n, the vector yields


 =

⎡
⎢⎢⎢⎣

f0(0) f1(0) f−1(0) · · · f m−1
2

(0) f− m−1
2

(0) −N1,p(y(0)) −N2,p(y(0)) · · · −Ni,p(y(0))
f0(1) f1(1) f−1(1) · · · f m−1

2
(1) f− m−1

2
(1) −N1,p(y(1)) −N2,p(y(1)) · · · −Ni,p(y(1))

...
...

...
...

...
...

f0(n) f1(n) f−1(n) · · · f m−1
2

(n) f− m−1
2

(n) −N1,p(y(n)) −N2,p(y(n)) · · · −Ni,p(y(n))

⎤
⎥⎥⎥⎦ (27)

The output vector is

YT = [
N0,py(0) N0,py(1) · · · N0,py(n)

]
(28)

Parameters of 	 can be solved as a least squares solution

	̂ = (
T
)−1
TY (29)

4.3. A summary of the system identification algorithm
The system identification algorithm can be summarised as fol-
lows:

Hammerstein model estimation

(1) Calculate operating points of u using Equation (3)
(2) Predetermine intermediate input variable w =

w1,w2,w3, . . . ,wn with a fixed deviation δw =
wmax − wmin

n − 1
, where n is the number of operating

points of u. w1 = wmin, w2 = w1 + δw, w3 = w2 + δw and
wn = wmax

(3) Map the respective operating points of input u to w to
create data pairs

(4) Predetermine the polynomial order
(5) Form the φni matrix andU vector (4) from the operating

points of the input signal u

(6) Obtain themodel coefficients of inverse static input non-
linearity using Equation (5)

Wiener model estimation

(1) Predetermine the process settling timeM and the model
orderm for the linear model

(2) Predetermine the B-spline curve degree (p) for the non-
linear model

(3) Choose random points from output data range (y) as a
set of parameters for knots calculation

(4) Apply Equation (17) to calculate the knot vector
(5) Compute the basis functions of the curve using

Equations (18) and (19)
(6) Form 
 matrix (27) and Y vector (28)
(7) Execute the crude estimation for the model parameters

of linear and inverse static output nonlinearity using
Equation (29)

(8) Calculate the intermediate output (x(k)) using
Equation (20) and construct data pairs from the value of
output (y(k)) and intermediate output (x(k))

(9) Predetermine the number of clusters (c) for the curve
(10) Apply the k-means algorithms in Section 4.2.3 to find c

centroid points (yi, xi), where i = 1, 2, ���c
(11) Take the y value of all the centroids as a set of parameter

for knot calculation
(12) Repeat steps 4–6
(13) Estimate the model coefficients (	) for the linear

and inverse static output nonlinearity models using
Equation (29)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

Data sample

u(
k)

(a) Data Input

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Data sample

y(
k)

(b) Data Output

Figure . Data set for system identification.
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Figure . Inverse static input nonlinearity (u(k)= f−w(k)).

5. Identification results
This section covers identification results and predicted model
analysis. The results are obtained from the implementation of
proposed system identification procedures which have been
explained in Section 4. The algorithms are employed to esti-
mate the linearmodel and the inverse static nonlinearity of input
and output model for virtualised software system environment.
Data set for identification is a set of observed input and out-
put data from the experimental test-bed which is built based
on the process scenario described in Section 2. Four hundred
samples of data pairs are generated using multi-level sinusoidal
input with minimum 100 requests/s workloads for each client
class (see Figure 8). Input variable for the system identifica-
tion is calculated based on Equation (3) for total available CPU

capacityCaptotal = 100 and theminimum capacity allocation for
each VM is 20 CPU caps.

Validation of the estimated model is based on the value
of Mean Squared Error (MSE) which calculates the difference
between the prediction result over the true values.

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (30)

where ŷ is the response of predicted model and y is the observed
response.

5.1. Hammersteinmodel
Based on the modelling approach on Section 4.3, the inverse
static input nonlinearity models u(k) = f−1(w(k)) are approxi-
mated in polynomial function. The intermediate variable w(k)
values are set arbitrarily by wmin = −15, wmax = 15 where δw =
0.5. These settings were used in Patikirikorala et al. (2011a). The
data pairs of input u and intermediate variable w are

u =
{
20
80

,
21
79

, . . . ,
50
50

, . . . ,
79
21

,
80
20

}
w = {−15,−14.5, . . . , 1, . . . , 14.5, 15} (31)

Using least squares method, the inverse static input nonlinear-
ity model is represented in the function below with MSE value
0.000068, and the model fitting can be seen in Figure 9. After
identifying input nonlinearity, the rest of the system will be
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(a) 6 B-spline curve parameters
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(b) 7 B-spline curve parameters
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(c) 8 B-spline curve parameters
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(d) 9 B-spline curve parameters

Figure . Estimated B-spline model of inverse static output nonlinearity and the position of non-uniform parameters from random selection.
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(b) 7 B-spline curve parameters
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(c) 8 B-spline curve parameters
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(d) 9 B-spline curve parameters

Figure . Estimated B-spline model of inverse static output nonlinearity and the position of nonuniform parameters from centroids of clustered data.

0 50 100 150 200 250 300 350 400

-1

-0.5

0

0.5

1

Data sample

M
od

el
 o

ut
pu

t
x(

k)

 

 

linear model

inverse static output nonlinear model

Figure . The output of linear and inverse static output nonlinear models.

estimated as a Wiener system.

u(k) = 4.17e−7w(k)5 + 9.34e−6w(k)4 + 1.018e−4w(k)3

+ 0.0028w(k)2 + 0.08w(k) + 1.0045 (32)

5.2. Wienermodel
Referring to the block structure of Figure 1, the intermediate
output variable (x(k)) represents the output of the linear model
and the inverse static output nonlinearity model. FSF structures

represent the linear model and B-spline functions capture the
inverse static output nonlinearity. Both models are estimated
in a straightforward formulation using the algorithm from
Section 4.2.4. To apply this approach, the regressor and out-
put vector are composed of the observational data values using
Equations (27) and (28). In the subsections below, the model
parameters are evaluated in accordance with the model predic-
tion fitness measurement in MSE value. For nonlinear model
evaluation, three different estimations are implemented: poly-
nomial, B-spline curve with nonuniform random selection
parameters and B-spline curve with nonuniform parameters
using the clustering method as proposed in this study.

... Linearmodel in FSF function
Referring to Figure 1, the input of linear model is the inter-
mediate input variable w(k) and the output is the intermediate
output variable x(k) and FSF function is employed to capture
the linear characteristic. Two parameters should be predeter-
mined: the process settling time in terms of samples (M) and
the number of frequency (m). Formodel analysis purpose, these
parameters are changed to have a clear understanding about
their influence on the modelling accuracy. Curve parameters
for knots distribution in nonlinear model are set to 12 points
T = {0, 0.51, 1.35, 2.24, 3.87, 6.93, 10.37, 10.41, 12.03, 13.72,

Table . Mean Squared Error (MSE) of model estimation in different FSF parameter.

Model parameters (M/m) / / / / / /

MSE . . . . . .
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Figure . Estimated polynomial model of inverse static output nonlinearity.

Table . Mean Squared Error (MSE) of model estimation with
non-uniform parameters from random selection.

Model parameters    

MSE . . . .

Table . Mean Squared Error (MSE) of model estimation with
non-uniform parameters from the centroids of clustered data.

Model parameters    

MSE . . . .

15.55, 16}. Then, the knot vector is calculated using Equation
(17) which yields the nonperiodic knot vector Q = {0, 0, 0,
0, 1.36, 2.48, 4.35, 7.06, 9.24, 10.94, 12.05, 13.77, 16, 16, 16,
16}. The prediction results are presented in Table 1. It can be
seen from the table that increasing parameter M leads to less
accuracy of prediction. On the other hand, the variation of the

number of frequency (m) shows that the higher m, the better
prediction will be gained. Based on the MSE values, the best
parameters are M = 30 and m = 13. These parameters are
used in the next system identification analysis presented in this
paper.

... Inverse static output nonlinearity in B-spline function
The input for B-spline curve estimation is the degree of spline
and a sequence of parameter that will be used in knot vector
generation. In this study, the degree of spline is set to 3 for cubic
spline model and knot vector is non-uniform. The parameter
selections for knot points calculation are examined in two dif-
ferent approaches, randomly selected parameters and parame-
ters from centroids of clustered data.

Case A. Parameters from random selection

The sequence of the parameters are selected randomly along
data values of system output (y). The number of parameters

Table . Linear model parameters in Case A.

Number of B-spline model parameter in estimation

Linear model coefficient    

G(ej) . . . .
G(e jω1 ) − . − . − . − .
G(e jω2 ) − . − . − . − .
G(e jω3 ) − . − . − . − .
G(e jω4 ) − . − . − . − .
G(e jω5 ) . . . .
G(e jω6 ) − . − . . .
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Table . Linear model parameters in Case B.

Number of B-spline model parameter in estimation

Linear model coefficient    

G(ej) . . . .
G(e jω1 ) − . − . − . − .
G(e jω2 ) − . − . − . − .
G(e jω3 ) − . − . − . − .
G(e jω4 ) − . − . − . − .
G(e jω5 ) − . − . − . .
G(e jω6 ) − . − . − . − .

are varied (6,7,8,9) to express the effect of the length of param-
eter set when it is chosen randomly. It is inevitable that the
predicted model is varying since any change in random val-
ues leads to different curve result. These estimation results are
designated to demonstrate the accuracy of model identification
by directly selecting non-uniform points as the curve parame-
ters for knot vector generation. For each estimation, the iden-
tification procedures are repeated five times and selected the
best model with the lowest MSE value. It can be seen from the
model fitting in Figure 10 and the MSE value in Table 2 that
more parameters give better prediction for the B-spline curve.
However, this practice raises the issue about parameter redun-
dancy of the predicted model. The best system identification
result is the one that could approximate the system with least
parameters.

Case B. Parameters from the centroids of clustered data

The estimation procedure and model setting are similar with
Case A. The estimation results of inverse static output nonlin-
earity using data clustering approach can be seen in Figure 11.
It shows that more points occupied the complex and dense area
and few points on flat area. This is the superiority of the pro-
posed method over basic parameter selection method. Model
fittings of B-spline curve on Figures 10 and 11 highlight the
importance of proper parameter selection for B-spline curve
knot vector. Clustering the data values before choosing the
parameters is a reasonable way to set the suitable breakpoints
for knot vector, specially for systems such as virtualised soft-
ware system where its nonlinearities lead to a scatter data rela-
tion between the input and output of the system. The improved
model parameters selection method brings interesting result
in terms of prediction accuracy. More accurate models with
clustering approach can be achieved with less parameters (see
Table 3). With only 6 parameters from clustering method, the
error prediction is less than the estimation with 9 parameters
in random selection method. The fitness of model prediction
on intermediate variable x(k) with 6 parameters from cluster-
ing method point is represented in Figure 12. Tables 4 and 5
represent the linear model parameters for CaseA and CaseB
respectively where the real values of G(e− jωl ) are similar with
G(e jωl ).

In spite of the fact that increasing the number of cluster
gives smaller MSE value of the prediction, the estimated model
will be overfitting which is unfavourable for control design.
Therefore, the curve parameters should be located suitably
to have an accurate estimation, yet with less parameters to

Table . Mean Squared Error (MSE) of model esti-
mation in polynomial function.

Model order    

MSE . . . .

avoid multiplicity and overfitting issue. In short, the proposed
approach to apply clustering method for proper selection
curve parameters is very effective to address these related
objectives.

... Comparative study using polynomial function
Identification of nonlinear model in virtualised software system
can also be conducted in polynomial function (Aryani,Wang, &
Patikirikorala, 2014). The Wiener models are formulated using
FSF terms and polynomial function to estimate x(k)= f−1(y(k)).
The polynomial model fitting can be seen in Figure 13 and the
MSE values in Table 6. The results show that the higher poly-
nomial order gives better model prediction. However, the issue
of multiplicity, which has been a concern in nonlinear dynamics
modelling, can be seen from the curve fitting of the estimated
models.

6. Conclusion
This paper proposes a system identification method for esti-
mating virtualised software system dynamics within the frame-
work of a Hammerstein–Wiener model. It is a straightforward
approach with significant improvement for the Wiener models
where the linear dynamic is represented in FSF function and the
nonlinear dynamic inB-spline function. Furthermore, data clus-
teringmethod is utilised in curve parameter selection tomanage
the knot position of B-spline curve. The proposed approach has
been implemented using experimental data from the virtualised
software system test-bed and the system identification results
demonstrate significant improvement for parameter selection of
nonlinear model.
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