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channel 3 (Fig.7) which represents the third harmonic has the 
highest noise. Channel -1 representing the image has the 
second highest noise. Channel 0 has lower noise than channel 
2 as channel 0 is centered at fc. This plot further validates the 
conclusions drawn from Fig. 7. 

 
V. CONCLUSION 

This paper compares even-quantisation and odd-quantisation 
schemes for Cartesian ΔΣ upconverters.  OFDM is used as the 
input signal. The characteristics of the input test signals and 
the OSR for both schemes are kept the same. The overall 
performance of the even-quantisation scheme is worse than 
the odd-quantisation scheme as the even-quantisation structure 
has an inherently higher noise floor. It can be observed that 
the third harmonic is the biggest noise contributor followed by 
the image. Interestingly, the overall better performances of the 
odd-quantisation scheme occur at lower input signal levels. 
These levels benefit from the lower first quantisation step of 
the odd-quantisation scheme.  The benefit is lost when the 
input signal level rises to within about 7dB of the optimum 
signal level. The image and third order distortions dominate 
the performance at large signal levels and make signal tuning 
by using frequency offsetting at baseband a non-attractive 
proposition. The type of quantisation does not improve this 
aspect of the output spectrum.  Tuning by changing the sample 
rate would obviate the need for offsetting and so avoid the 
problem.   
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