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Abstract:-This paper studies a miniaturization 9 a
substrate-integrated waveguide (SIW) bandpass filter
(BPF) using only a square cavity. This cavity is to be
loaded with a sector circular patch, where each
sectored patch is connected to the bottom surface of the
cavity through a shorting blind via. Each of the
shorting-via loaded sectored- patches and the cavity’s
top and bottom surfaces form a resonator. Hence,
multiple resonators can be housed in a single square
cavity and then are fed properly to construct a multi-
pole BPF. For easy integration with surrounding circuit
components, itis to be considered by only the case
where the cavity is fed with the coplanar waveguide
(CPW) rather than the coaxial cable. The downshifts in
the resonance frequency of the proposed resonator
structure for the different number of sectors obtained
from a complete cicuit patch are studied. BPFs
constructed using one, two, and threesectored patches
are designed and compared. A sample BPF using three
sectored patches is fabricated and measured. As
compared with the third-order BPF using three empty
SIW cavities, the size uction rate of the fabricated
one is up to 98%. A good agreement is obtained
between simulated results and those measured.

Keywords:- Miniaturization; trisection bandpass filter
(BPF), SIW

L. INTRODUCTION

Nowadays, a various of emerging wireless
communication systems is developing rapidly. One of the
most important devices for wireless communication systems
is a filter to minimize interference by passing a frequency
band of interest. It is a device which ser » select and/for
reject specific  frequency channels. High-performance
filtering is critical since spectral crowding increases the need
for interference mitigation. Interference mitigation will
necessitate out-of-band attenuation. The such out-of-band
attenuation is able to be provided by bandpass filters (BPFs).
In general, a waveguide 1s used for designing a BPF with
respect to a high selectivity and Q-factor. Disadvantages of
the waveguide BPF are the size of the filter which is bulky
and cglly as well.

More than a decade ago, a laminated waveguide (also
termed the substrate integrated waveguide, SIW), which is
composed of a substrate with via-hole rows emulating the
waveguide’s side walls, was proposed [1]. Since then, it
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become an issue which has been attractive largely many
researchers. It offers a new structure in BPF design. The
smaller size make bandpass SIW filter very suitable for
some applications such as satellite communication and radar
systems. In addition, it possess highly integration capability
with other planar structures. The SIW-based BPF can be

ficated in a single layer or multilayer employingprinted
circuit board (PCB) or low temperature cofired ceramic
(LTCC) technology [2]. For the time being, trisection BPFs
on the basis of SIW have been reported in [3] using the
circular cavity and in [4-5] using the rectangular cavity.
These filters employ three cavities as resonators to construct
a trisection BPF, while input and output resonators are
cross-coupled. Nevertheless, the SIW’s working frequency
15 I respect to the physical size of the component.
Therefore, one of the SIW’s shortcomings is still its larger
dimension than that of the planar counterparts (e.g.,
microstrip line).

For circuit-size reduction purpose in BPF design, there
have been many efforts to miniaturize SIW-based BPFs.
Miniaturization techniques can be conducted using a half of
conventional  SIW, so-called HMSIW, while still
maintaining its characteristics [6-7]. The further reduction
of HMSIW results in a quarter of conventional SIW named
quarter-mode SIW (QMSIW) whereas reserving its original
characteristics as well [8]. Both of these techniques are to
reduce physical dimensions of SIW resonators. The sense of
miniaturization is not only the size reduction but also the
resonant  frequency decrease. In the latter case,
miniaturization is able to be achieved by loading the SIW
by means of capacitive and inductive loading in order to
make it to work below its cutoff frequency as exhibited in
[9-10], respectively. In both of these cases, the SIW’s size is
still same as the conventional one, however, its resonant
frequency is shifted downward from the fundamental mode
frequency. In [11], another miniaturization process 1s
proposed for which the SIW cavity (SIWC) 1sisls of three
metal layers and two substrate layers. The circular patch is
located in a sandyfiched middle metal layer so that results in
a large loading capacitance between the circular patch and
the top/bottom SITWC walls.

This paper is to study a miniaturization Esign of the
substrate-integrated  waveguide (SIW)  multi-resonator
bandpass filter (BPF) using only a square cavity on the basis
of the proposed structure in [11].
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1I. RESONATOR DESIGN

Fig. 1(a) shows the proposed basic resonators to obtain
a miniaturized SIW cavity bandpass filter (BPF) which
consists of three 0.035-mmthick metal layers, two substrate
layers, and a thick prepreg (PP) as shown in Fig. 1(b). The
ércg material is to be introduced for the binding purpose
tween the middle metal layer and the top substrate.
Basically, the middle metal layer is a circular patch, which
can be divided into some parts identically in order to obtain
the desired filter order and each part is further connected to
the ground by means of a shorting blind via as depicted in
Figure 1(a). All metal layers are dered as copper,
meanwhile substrate layers are made of Rogers RT/Duroid
5880 (e, = 2.2, tand = 0.0009) different thickness of
whichthe top substrate hashiy, = 0.254 mm and the bottom
substrate hashyeuem = 1.58 mm. The SIW square-shaped
cavity resonator occupies an area of 25 x 25 mm® with
which a fundamental mode, TE101, exist around 5.67 GHz.
These parameters and dimensions are to be implemented to
study and design BPFs with the different order.
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The resonance frequency of the resonator is primarily
determined by the SIWC’s loading capacitance, while the
loading capacitance is mainly contributed by the region
bounded by the middle patch and the top SIWC wall due to
small thickness [11]. On the other hand, the inductance
section is established by the shorting blind via. Fig
exhibits that the proposed resonator structure results in the
electric field uniformly on the surface of the middle metal.
As a result, the resonance frequency of the proposed
resonator can be greatly lowered from that of a standard
patch-free  SIWC resonator, and among these basic
resonators, full circular patch resonator has the lowest
resonance frequencyas can be seen in Fig. 3. However,
lowering the dimension of the middle metal as a single
resonator by sectioning the full circular patch into some
sections will increase the resonance frequency of the
resonator. It makes sense that lowering the dimension of the
middle metal is to decrease loading capacitance, in turn, it
will increase the resonance frequency of the resonator as
described in [11].

Meanwhile, by modifying the location of the shorting
blind via from the cavity center, the resonance frequency of
the resonator will be increased so that for the fine tuning
purpose, one
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(b)
Fig. 1: Shape of middle metal layer dan resonator structure; (a) various shapes of middle metal layer; (b) cross-section of
resonator structure
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Fig. 2: E-field distribution inside the middle metal layer shown in Fig. 1 at the corresponding resonance frequency
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Fig. 3: The resulted resonance frequencies of the basic m)namrs at various positions of the shorting blind via from the cavity
center can adjust shorting blind-via position. In addition, as dep) in Fig. 4, increasing the thickness of the bottomsubstrate will
decrease the resonance frequency of th@sonator. In contrast, increasing the thickness of the top substrate will also increase the
resonance frequency. Shortly, lowering the thickness of the top substrate and increasing the thickness of the bottom substrate will
increase the miniaturization factor. However, these means will be restricted by available materials and allowable fabrication
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Fig. 4: Effect of the substrate thickness on the resonance frequency
111, FILTER DESIGN ength of the CPW and maintaining the width of the CPW and
) other dimensions constantly, as depicted in Fig. 5(b). The Q.
A. One-Pole Bandpass Filter value can be extracted by the singly-loaded expression [12]
The proposed one-pole filter along with its dimensions is
obtained by employing them patch shape of the middle metal Qe=fo/Afeo0’(1)
as exhibited in Fig. 5(a). In order to design a such filter, the )
dimensions of th@ffuare SIW cavity can be obtained as where f; denotes the simulated resonance frequency,

described in [11]. The unloaded Q factor,Q,, of the proposed ~ While Af.oo’represents the frequency difference between phase-
structure is 221. The structure is excited by using aalanar shift +90° and phase-shift —90° occuring in the Si; phase
waveguide (CPW) structure. Therefore, the required external — response.

quality factor (Q.) can be controlled by varying the inner-strip
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Fig. 5: One-pole bandpass filter; (a) the proposed structure, (b) External quality factor (Q.) of the one-pole BPF vs. inner-strip
length
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Fig. 6: Simulated S-parameter response of the one-pole bandpass filter
By using Q. value of 22 which is realized by the inner- B. Two-pole Bandpass Filter

strip length of 7.9 mm, Fig. 6 [{flhibits the S-parameter Fig.7 shows the proposed structure of the two-pole BPF
response of the on@]e BPF. As can be seen that the center using the proposed half patch resonator with its associated
frequency is 0.888 GHz. The return loss tter than 30 dB, dimensions. The structure implements magnetic coupling
whereas the insertion loss is 0.4 . The 3-dB fractional among resonators. This coupling is caused by the induced
bandwidth is 9.08%. The entire of the proposed one- currents on the shorting blind vias. Actually, electric
pole filter is 001 A% where A is the wavelength in the couplingexists between adjacent edges of the half patches.
medium of the dielectric material at the operating frequency. However, electric coupling between them is very weak. This

is because the top substrate is so thin that the electric field is
strongly bound in the region between each half patch and the
top SIWCwall. As a result, the coupling among them is the
dominated magnetic coupling, and is established by the
shorting blind via.

Fig. 7: The proposed structure of the two-pole BPF
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In order to design a such BPF, once the resonator is
dimensioned, one can follow the conventional procedure by
determining the design values of the low-pass
Butterworth/Chebyshev prototype response on the basis of
the specification target. On the basis of the coupled-
resonator filters design, the general coupling matrix is
implemented to represent the empldsgd coupling topology.
Therefore, the relationship between coupling coefficients or
external quality factors and physical dimensions of the
coupled resonators must be established. In this case, spacing
of the two shorting blind vias represents the physical
dimensions, and is employed to derive the proper coupling.
The simulation is carried out by providing weak coupling
for the input/output. The values of the simulated coupling
coefficient are%mcted by the well-known expression [12]

k== {[(f1)" = (&)1 / [(F)* + (22’1}

(2)

where f; and £ represent the high and low resonant
frequencies, respectively, and k denotes the value of
coupling coefficient between two resonators in terms of the
distance between two shorting blind vias. In addition, k > 0
and k < 0 indicate magnetic and electric couplings,
respectively.

As with the one-pole BPF, the required external
quality factor (Q.) can also be controlled by the inner-strip
length of the CPW at the input/output, and can be extracted
by using (1). In order to turn out the relationship between
the ph)aal dimensions and the required theoretical design
values, the coupling coefficient as a furfigfion of the spacing
between the shorting blind vias, and the external quality
factor value as a function of the inner-strip length is plotted
in Fig.8(a) and (b), respectively.

Coupling Coefficient
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As shown in Fig.8, the strong coupling can be
achieved when the distance between two shorting blind vias
are in the close proximity. In other hand, the weak coupling
can be obtained by making larger distance between them.
Roughly speaking, it is possible to control coupling
coefficient by adjusting distance between two blind vias.
The horizontal distance between the two shorting blind vias
can be employed for coarse adjustment of the coupling
coefficient, meanwhile the vertical distance can be used for
fine tuning purpose.

With the coupling coefficient of 0.0193 between two
resonators and external quality factor of 21.47, the proposed
-pole BPF has S-parameter response as shown in Fig.9.
e center frequency is 125 . The return loss is better
than 25 dB, whereas in-band insertion loss is 2.1 dB. The 3-
dB fractional b: idth is 2.6%. The proposed two-pole
BPF provides an out-of-band rejection better than 20 dB
30 dB up to 47721 and 4.7698 GHz, respectively. The
unloaded Q factorQ,.of the structure is 214. The overall
size of the proposed two-pole BPF, excluding CPW feed
lines, is 0.024 (Ag)>.

C. Three-pole Bandpass Filter

Fig. 10 exhibits the structure and its associated
dimensions of the proposed SIWC three-pole BPF. Such
filter is well-known as a trisection BPF using one-third
patch as the basic resonator. The proposed trisection BPF is
a central reflection-type resonator as reported in [13].

.
A
—
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Fig. 9: Simulated S-parameter response of the two-pole BPF
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A such structure introduces a cross coupling between
the first resonator in terms of the input resonator and the
third resonator in terms of the output resonator. Therefore,
there are two possible paths from input to output. As a
result, the structure introduces one TZ in its response. The
associated TZ occurs near the upper edge of the passband.
This TZ is to improve the selectivity performance of the
filter. Its metrical response benefits some applications
requiring higher selectivity only on one side of the passband.
The derived TZ is able to be related to coupling coefficients
as follows [13]

= fo+ (f/ 2) (k) ki (3)

where f, and fj represent the frequency of transmission
zero and the center frequency, respectively, whereas k> and

L¥ ] "

g

Coupling Coefficient
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kisindicate coupling coefficient of resonator 1 and 2 and
cross coupling, respectively.

Again, in order to design a such filter, one can follow
procedures whiaam described in the sub section B. Fig.
11(a) shows the relationship between the coupling
coefficient and the physical dimensions of the filter in terms
of the distance between two blind vias of the resonators. The
larger coupling coefficient values can be obtained by
shortening the distance between two blind vias with respect
to the direction ndicular to the edge of the patch. Fig.
11(b) describes the relationship between the external quality
factor for resonator 1 and the inner-strip length of CPW,
while the other dimensions of the CPW are maintained to be
same as Fig. 10. Eventually, the tuning processes must be
carried  out to obtain  an  optimal  response.

10 15
Jole (mm)
(a)

Ly (mm)
(b)

Fig. 11. (a)Coupling coefficient vs. distance between the adjacent shorting vias of the resonators, (b) External quality factor vs.
inner-strip length

19

The simulated S-parameter response 1s shown in Fig.
13. It can be seen that the trisection BPF has the higher
selectivity performance than one-pole and two-pole BPFs
with which a transmission zero appears ely to the
passband at upper side of stopband due t ss coupling
between the first and the third resonators. The unloaded Q
factor,Qy.of the proposed structure is 216. Hence, for the
fabrication purpose, our concern is only for the trisection
BPF.

D. Fabrication Results

The designed tisection BPF is realized by using three
0.035-mmthick rm] layers and two substrate layers. The
top and bottom Rogers RT/Duroid 5880 substrate layers
with dielectric constant & = 2.2 and loss tangent tand =
0.0009 have the thicknesses 0.254 and 1.58 mm,
respectively. A 0.08-mmthick prepreg (PP) layer with
dielectric constant 4 and loss tangent 0.013 is placed

LJISRT23JAN1188

between the middle metal layer andthe top substrate for the
binding purpose. The fabricated structunchown in Fig.
10 and Fig. 12. The inset of Fig. 13 shows the measured and
simulated narrowband S-parameter responses of the
proposed SI isection BPF, whose photos are given in
Fig. 14. The measured results are in good agreement with
simulated ones.

As mentioned in the sub section C, there is [l
transmission zero nearby upper edge of the passband, and 1t
can be seen clearly that the proposed structure reflects its
type as reported in [13]. The such wan§hission zero will
sharpen one side of the passband skirt. The measured and
the simulated ind minimum insertion loss of the
proposed BPF are 29 dB and 1.95 dBrespectively.
Meanwhile the measured and the simulated 3-dB fractional
bandwidth (FBW) are

www.ijisrt.com 1390
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Fig. 13: The measured and simulated S-parameter responses of trisection BPF

3.97% and 4% with the center frequencies of 1.612
and 1.6 GHz, respectively. The measured and the simulated
transmission zero are 1.66 and 1.65 GHz. These values
approach the value obtained by using (3) as large as 1.648
GHz.

From Fig. 13, the measured high-end stopband BW is
2.69 and 3.04 GHz under the criterion of insertion loss
greater than 30 and 20 dB, respectively, corresponding to an
upper stopband fractional bandwidth (FBW) of 166.873%
and 190%. In order to exhibit our structure superiorities,
Table 1 provides comparison between our work and related
SIWC trisection BPFs. In this table, the datum with a tilde
sign in front denotes that such a datum is not given in the
reference paper, but is estimated by us using curves or other
relevant data available. Clearly, our circuit design has a

much better area efficiency than those of the others. In
particular, the occupied circuit area of our proposed BPF is
0.04 47, which is much smaller than the area of 2 4]
required by a regular patch-free three-cavity SIWC
trisection BPF, that is, miniaturization factor of 98% can be
achieved. In addition, our circuit design yields the largest
upper stopband fractional bandwidth (FBW) with the
criterion of S»;<-20dB.

Fig. 14: Fabricated trisection BPF; (a) top view, (b) bottom view
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Circuit Insertion loss FBW Upper-stopband FBW (%)
size (1}) (dB) (%) (821=-20dB)

[2] 0.126 24 ~6 NA

[3] ~2.6 29 15 NA

[4] 0.511 1.15 58 ~20

[5] ~0.98 2.46 195 >43

This work 0.04 2.9 397 190

m CONCLUSION

This paper has already studied and shown a
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