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Abstract: The purposes of this research are to formulate the equation of motion of the system, to develop the computational 

codes by a finite-element method in order to perform dynamics simulations with vibration control and to propose an effective 

control scheme of a flexible single-link manipulator. The system used in this paper consists of an aluminum beam as a flexible 

link, a clamp-part, a servo motor to rotate the link and a couple of piezoelectric actuator to control vibration. Computational 

codes on time history responses, FFT (Fast Fourier Transform) processing and eigenvalues - eigenvectors analysis were 

developed to calculate the dynamic behavior of the link. Furthermore, a control scheme using the piezoelectric actuators was 

designed to suppress the vibration. A proportional-derivative controller was designed and demonstrated its performances. The 

calculated results of the controlled single-link manipulator revealed that the vibration of the flexible manipulator can be 

controlled effectively. 
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1 INTRODUCTION 

Employment of flexible manipulators is recommended 

in the industrial applications in order to accomplish high 

performance requirements such as high-speed but safe 

operation, increasing of positioning accuracy, less weight 

and lower energy consumption. However, a flexible 

manipulator usually cannot be controlled easily because of 

its inheriting flexibility. Deformation of the flexible 

manipulator when it is operated must be considered in the 

control. Its controller system should deal with not only its 

motion but also vibration due to flexibility. 

The purposes of this research are to formulate the 

equation of motion of the system, to develop 

computational codes by a finite-element method in order 

to perform dynamics simulation with vibration control and 

to propose an effective control scheme of the single link 

flexible manipulator. The system used in this paper 

consists of an aluminum beam as a flexible link, a clamp-

part, a servo motor to rotate the link and a couple of 

piezoelectric actuator to suppress vibration. Computational 

codes on time history responses, FFT (Fast Fourier 

Transform) processing and eigenvalues - eigenvectors 

analysis were developed to calculate the dynamic behavior 

of the link validated by the experimental one. Furthermore, 

an end-effector that treated as a concentrate mass was 

introduced to demonstrate a complete flexible single-link 

manipulator system. Finally, a proportional-differential 

(PD) controller was designed to suppress the vibration. It 

was done by adding moments of force generated by the 

piezoelectric actuators to the single-link.  

 

2 FORMULATION BY FINITE-ELEMENT 

   METHOD 

    The link has been discretized by finite-elements. The 

finite-element has two degrees of freedom, namely the 

lateral deformation v(t), and the rotational angle ψ(t). The 

length, the cross-sectional area and the area moment of 

inertia around z-axis of every element are denoted by li, Si 

and Izi respectively. Mechanical properties of every 

element are denoted as Young’s modulus Ei and mass 

density ρi.   

2.1 Kinematics 

    Figure 1 shows the position vector of an arbitrary point 

P in the link in the global and rotating coordinate frames. 

Let the link as a flexible beam has a motion that is 

confined in the horizontal plane as shown in figure 1. The 

O – XY frame is the global coordinate frame while O – xy 

is the rotating coordinate frame fixed to the root of the link. 

A motor is installed on the root of the link. The rotational 

angle of the motor when the link rotates is denoted by θ(t).  

    The position vector r(x,t) of the arbitrary point P in the 

link at time t = t, measured in the O – XY frame shown in 

figure 1 is expressed by 

 

    JIr ),(),(),( txYtxXtx ��                 (1) 

 

Where 

 

    
)(sin)()(cos),( ttvtxtxX 33 
�                                 (2) 
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O – XY: Global coordinate frame 

O – xy : Rotating coordinate frame 

Fig. 1. Position vector of an arbitrary point P in the link  

in the global and rotating coordinate frames 
 

The velocity of P is given by 

    JIr ),(),(),( txYtxXtx ��� ��                                  (4) 

2.2 Finite-element method 

    Figure 2 shows the rotating coordinate frame and the 

link divided by one-dimensional and two-node elements. 

Then, figure 3 shows the element coordinate frame of the 

i-th element. 

 

 

 
 

 

o – xy: Rotating coordinate frame 

Fig. 2. Rotating coordinate frame and the link  

divided by the one-dimensional and two-node elements 

 

 

 
 

 

oi – xi yi: Element coordinate frame of the i-th element 

Fig. 3. Element coordinate frame of the i-th element 
 

Here, there are four boundary conditions together at nodes 

i and (i+1) when the one-dimensional and two-node 

element is used. The four boundary conditions are 

expressed as nodal vector as follow   

    
8 9T

iiiii vv 11 ��� CCδ                    (5) 

 

Then, the hypothesized deformation has four constants as 

follows [1] 

    
3

4
2

321 iiii xaxaxaav ����                    (6) 

 

The relation between the lateral deformation vi and the 

rotational angle ψi of the node i is given by 

    
i

i
i

x

v

F

F
�C                           (7) 

 

Furthermore, from mechanics of materials, the strain of 

node i can be defined by 
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2.3 Equation of motion 

    Equation of motion of the i-th element is given by 

    
      

     ! iiiiiiii tt fδMKδCδM )()(2 33 ������ �
��                 (9) 

Where Mi, Ci, Ki, it f)(
..

3  are the mass matrix, damping 

matrix, stiffness matrix and the excitation force generated 

by the rotation of the motor respectively. The matrices and 

vector in Eq. (9) are represented as  
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The length of the i-th element, the length from element 1 

to i, and the Rayleigh damping factor are denoted by li, l1- i, 

and α [1] respectively. 
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    Finally, the equation of motion of the system with n 

elements considering the boundary conditions is given by 

 

    
 ! nnnnnnnn tt fδMKδCδM )()(2 33 ������ �
��          (14)   

           

3 VALIDATION OF FORMULATION AND 

   COMPUTATIONAL CODES  

3.1 Experimental model  

    Figure 4 shows the experimental model of the single-

link manipulator. The single-link manipulator consists of 

the flexible aluminum beam, the clamp-part, the servo 

motor and the base.  The single-link is attached to the 

motor through the clamp-part. The motor is mounted to the 

base. In the experiments, the motor was operated by an 

independent motion controller. 

 

 

 

 

 

 

 

 

Fig. 4. Experimental model of the single-link manipulator  

3.2 Computational models 

    In this research, we defined and used three types of 

computational models of the single-link manipulator.  

3.2.1 Model  

    A model of only a single-link manipulator was used as 

Model . Figure 5.a shows Model . The link and the 

clamp-part were discretized by 5 elements and 1 element 

respectively. The clamp-part is much rigid than the link. 

Therefore Young’s modulus of the clamp-part was set in 

1,000 times of the link’s. A strain gage is bonded to the 

position of Node 3 of the single-link (0.11 m from the 

origin). 

3.2.2 Model  

    A model of the single - link manipulator including the 

couple of piezoelectric actuators was defined as Model . 

Figure 5.b shows Model . The piezoelectric actuators 

were bonded to the both surfaces of element 2. The link 

was discretized by 22 elements. A schematic 

representation on modeling of the piezoelectric actuators is 

shown in figure 6. Physical parameters of the single-link 

model and the piezoelectric actuators are shown in table 1. 

   The piezoelectric actuator suppresses the vibration of the 

single-link flexible manipulator by adding moments of 

force at nodes 2 and 3, M2 and M3 to the single-link. The 

moments of force are generated by applying voltages ±E to 

the piezoelectric actuators as shown in figure 6. The 

relation between the moments of force and the voltages are 

related by 

    
EdM 13,2 M�                                 (15) 

Here d1 is a constant quantity. 

    Furthermore, the voltage to generate the moments of 

force is proportional to the strain ε of the single-link due to 

the vibration. The relation can be expressed as follows 

 

    
Ed2M�"                                (16) 

 

Here d2 is a constant quantity. Then, d1 and d2 will be 

determined by comparing the calculated results and 

experimental ones. 

 

Substituting Eq. (16) to Eq. (15) gives 

 

     "
2

1
3,2

d

d
M M�                   (17) 

 

 
(a) Model : Only single-link  

 

 
(b) Model : Single-link with actuators 

 

 
(c) Model : Single-link with actuators and  

end efector 

 

Fig. 5. Computational models of  

the single-link manipulator  

 
Fig. 6. Modeling piezoelectric actuator 

     

3.2.3 Model 

  Figure 5.c shows Model  that an end effector of a 

single-link manipulator is considered by adding a 

concentrated mass to Model . In this case, the equation 
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of motion of the tip element containing the concentrated 

mass is given by 
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where the vector of 
cm

if  is given by   
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Then the concentrated mass matrix 
cmiM can be expressed 

as 
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Tabel 1. Physical parameters of  

the single-link and the piezoelectric actuators [2] 

l : Total length m 3.91 × 10
-1 

ll : Length of the link m 3.50 × 10
-1

 

lc : Length of the clamp-part m 4.10 × 10
-2

 

la : Length of the actuator m 2.00 × 10
-2

 

Sl : Cross section area of the link m
2
 1.95 × 10

-5 

Sc : Cross section area of the 

clamp-part 
m

2
 8.09 × 10

-4
 

Sa  : Cross section area of the 

actuator 
m

2
 1.58 × 10

-5
 

Izl : Cross section area moment 

of inertia around z-axis of the 

link  

m
4
 2.75 × 10

-12 

Izc : Cross section area moment 

of inertia around z-axis of the 

clamp-part  

m
4
 3.06 × 10

-8
 

Iza : Cross section area moment 

of inertia around z-axis of the 

actuator  

m
4
 1.61 × 10

-11
 

El : Young’s Modulus of the link GPa 7.03 × 10
1
 

Ec : Young’s Modulus of the 

clamp-part 
GPa 7.00 × 10

4
 

Ea : Young’s Modulus of the 

actuator 
GPa 4.40 × 10

1
 

ρl : Density of the link kg/m
3
 2.68 × 10

3
 

ρc : Density of the clamp-part kg/m
3 

9.50 × 10
2
 

ρa : Density of the actuator kg/m
3 

3.33 × 10
3
 

α  : Damping factor of the link - 2.50 × 10
-4

 

 

3.3 Time history response of free vibration 

    Experiment on free vibration was conducted using an 

impulse force as an external one. Figure 7.a shows the 

experimental time history response of strains εe on the free 

vibration at the same position used in the calculation.  

    Furthermore, the computational codes on time history 

response of model I were developed. Figure 7.b shows the 

calculated strains at Node 3 of Model I under the impulse 

force. 
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-100
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(a) Experimental result at 0.11 m from the origin 

0 10 20 30
-200

-100

0

100

200

 

(b) Calculated result at Node 3 of Model   

Fig.7. Time history response of strains on free vibration of 

the single-link 

 

3.4 FFT (Fast Fourier Transform) processing 

    Both the experimental and calculated time history 

responses of free vibration were transferred to their 

frequencies by FFT processing.    
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6.07 Hz

 

 

Fig. 8. Experimental natural frequency of the single-link 

     

    Figures 8 and 9 show the experimental and calculated 

natural frequencies of the single-link manipulator, 

respectively. The experimental first natural frequency, 

6.07 Hz well agreed with the calculated one. The second 

and third experimental natural frequencies could not be 

measured. However, in the calculation, they could be 

obtained as 38.00 Hz and 105.40 Hz.  
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Fig. 9. Calculated natural frequencies of  

Model    

3.5 Eigenvalues and eigenvectors analysis  

    The computational codes on eigenvalues - eigenvectors 

analysis were developed to find natural frequencies and 

vibration modes. The calculated results for the first, 

second and third natural frequencies were 6.10 Hz, 38.22 

Hz, and 107.19 Hz respectively. The vibration modes of 

natural frequencies are shown in figure 10. 

 

 
 

(a) First vibration mode (f1 = 6.10 Hz) 

 

 
 

(b) Second vibration mode (f2 = 38.22 Hz) 

 

 
 

(c) Third vibration mode (f3 = 107.19 Hz) 

Fig. 10. Vibration modes and natural frequencies of  

Model  

3.6 Time history responses due to the excitation force  

    Another experiment was conducted to investigate the 

vibration of the link due to the excitation force generated 

by rotation of the motor. In the experiment, the motor was 

rotated by the angle of π/2 radians (90 degrees) for 2.05 

seconds. Figure 11 shows the experimental time history 

response of strains due to the motor's rotation at the same 

position in calculation (0.11 m from the origin). Based on 

figure 11, the angular acceleration of the motor was 

calculated. Time history response of the motor’s 

acceleration is shown in figure 12.  Furthermore, based on 

figures 11 and 12, the time history response of strains at 

Node 3 of Model was calculated as shown in figure 13. 
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Fig. 11. Experimental time history responses of strains  

at 0.11 m from the origin of the single-link due to the 

excitation force generated by the motor's rotation    

 

 

 

Fig. 12. Time history response of  

angular acceleration of the motor 
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Fig. 13. Calculated time history responses of strains at 

Node 3 of Model  due to the excitation force 

generated by the motor's rotation 
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    The above results show the validities of the formulation, 

computational codes and modeling the flexible single-link 

manipulator.  

4 CONTROL SCHEME AND SIMULATIONS 

4.1 Control scheme 

   A PD (proportional-derivative) controller was designed 

so that vibration due to motor's rotation of a single-link 

system can become smaller. 

    Based on equation (17), the moments of force can be 

defined in term of the PD controller as follows 
 

    
 !  !

NO

N
P
Q

N4

N
5
6 


�
M�
dt

d
KKM d

d dp

44

443,2

""
""               (21) 

 

Furthermore, the equation of motion of the controlled 

single-link manipulator with n-elements is given by  

 

  
  ! )()()(2 ttt nnnnnnnnn ufδMKδCδM ��
�� 33 ������  

(22) 

 

where the vector of un(t) containing M2 and M3 is the 

control force generated by the actuators to the single-link. 

    Finally, a feedback control scheme of the single-link is 

shown in figure 14.  

                                              2s3  

 

 
 

 

 
 

 

 
 

Fig. 14. Block diagram of feedback control of  

the flexible single-link manipulator 

4.2 Calculated results  

    The time history responses of strains at Node 4 in the 

controlled system were calculated for Models and  

under the control scheme as shown in figure 14. The 

concentrated mass mc used for Model  is 0.01 kg. 

    Examining several gains of the PD controller leaded to 

P-gain of 1,000 [Nm/V] and D-gain of 0.058 [Nms/V] as 

the better ones. Figures 15 and 16 show both the 

uncontrolled and controlled time history responses for 

Model and , respectively. They were calculated when 

the motor rotated by the angle of π/2 radians (90 degrees). 

The maximum strains of uncontrolled for Model are 

22.80 × 10
-6

 and the controlled one becomes 9.76 × 10
-6

, 

respectively, as shown in figure 15. The maximum strains 

of uncontrolled Model  are 46.00 × 10
-6

 and the 

controlled one becomes 21.40 × 10
-6

, respectively, as 

shown in figure 16. It was verified from these results that 

the proposed control scheme can effectively suppress the 

vibration of the flexible single-link manipulator.  
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Fig. 15. The calculated time history responses of strains at 

Node 4 for uncontrolled and controlled model  due to 

the excitation force generated by the motor’s rotation 

(Kp = 1,000 [Nm/V] and Kd = 0.058 [Nms/V]) 
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Fig. 16. The calculated time history responses of strains at 

Node 4 for uncontrolled and controlled model due to the 

excitation force generated by the motor’s rotation 

 (mc = 0.01 kg, Kp = 1,000 [Nm/V] and  

Kd = 0.058 [Nms/V]) 

5 CONCLUSIONS 

    The equation of motion for the flexible single-link 

manipulator had been derived using the finite-element 

method. Computational codes had been developed in order 

to perform dynamics simulations of the system. 

Experimental and calculated results on time history 

responses, natural frequencies and vibration modes show 

the validities of the formulation, computational codes and 

modeling of the system. A simple and effective control 

scheme was designed to suppress the vibration of the 

system. The calculated results have been revealed that the 

vibration of the system can be suppressed effectively. The 

derivative gain used in the calculation is very small 

compared to proportional gain. Therefore, using a 

proportional controller will be sufficient for practical 

applications of the proposed control scheme.  

REFERENCES 

    [1] M. Lalanne, P. Berthier, J. D. Hagopiean , 

Mechanical  Vibration for Engineers, John Wiley & Sons 

Ltd, 1983,  pp. 146 -153. 

    [2] www.mmech.com, Resin Coated Multilayer   
Piezoelectric Actuators. 

S
tr

ai
n

, 
ε 

4
 (×

 1
0

-6
) 

S
tr

ai
n

, 
ε 

4
 (×

1
0

-6
) 

Time, t [s] 

Time, t [s] 

+

-

+
+

un  
Gp (s)  Gc (s)   KA 

fn  

εi (s) εid (s)  

PD 

Controller 
Actuator Single-link 

Manipulator 

The Nineteenth International Symposium on Artificial Life and Robotics 2014 (AROB 19th 2014), 

B-Con Plaza, Beppu, Japan, January 22-24, 2014

386© ISAROB 2014


