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1 Introduction

Employment of flexible manipulators is recommended in 

the space and industrial applications in order to accom-

plish high performance requirements such as high-speed 

besides safe operation, increasing of positioning accuracy, 

and lower energy consumption, namely less weight. How-

ever, it is not usually easy to control a flexible manipulator 

because of its inheriting flexibility. Deformation of the flex-

ible manipulator when it is operated must be considered by 

any control. Its controller system should be dealt with not 

only its motion but also vibration due to the flexibility of 

the link.

In the past few decades, a number of modeling meth-

ods and control strategies using piezoelectric actuators to 

deal with the vibration problem have been investigated by 

researchers [1–4]. Nishidome and Kajiwara [1] investigated 

a way to enhance performances of motion and vibration of 

a flexible-link mechanism. They used a modeling method 

based on modal analysis using the finite-element method. 

The model was described as a state space form. Their control 

system was constructed with a designed dynamic compensa-

tor based on the mixed of H2/H∞
. They recommended sepa-

rating the motion and vibration controls of the system. Yavus 

Yaman et al. [2] and Kircali et al. [3] studied an active vibra-

tion control technique on aluminum beam modeled in canti-

levered configuration. The studies used the ANSYS package 

program for modeling. They investigated the effect of ele-

ment selection in finite-element modeling. The model was 

reduced to state space form suitable for application of H
∞

 

[2] and spatial H
∞

 [3] controllers to suppress vibration of 
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the beam. They showed the effectiveness of their techniques 

through simulation. Zhang et al. [4] have studied a flexible 

piezoelectric cantilever beam. The model of the beam using 

finite-elements was built by ANSYS application. Based on 

the Linear Quadratic Gauss (LQG) control method, they 

introduced a procedure to suppress the vibration of the beam 

with the piezoelectric sensors and actuators were symmetri-

cally collocated on both sides of the beam. Their simulation 

results showed the effectiveness of the method.

Furthermore, applications of the AF control strategy to 

suppress vibration of a flexible system were done by some 

researchers [5–7]. Hewit et al. [5] used the AF control for 

deformation and disturbance attenuation of a flexible manipu-

lator. Then, a PD control was used for trajectory tracking of 

the flexible manipulator. They used a motor as an actuator. 

Modeling of the manipulator was done using virtual link coor-

dinate system (VLCS). Their simulation results had shown 

that the proposed control could cancel the disturbance satisfac-

torily. Tavakolvour et al. [6] investigated the AF control appli-

cation for a flexible thin plate. Modeling of their system was 

done using finite-difference method. Their calculated results 

showed the effectiveness of the proposed controller to reduce 

vibration of the plate. Tavakolvour and Mailah [7] studied the 

AF control application for a flexible beam with an electromag-

netic actuator. Modeling of the beam was done using finite-

difference method. The effectiveness of the proposed control-

ler was confirmed through simulation and experiment.

The purposes of this research are to derive the equations 

of motion of a flexible single-link system by a finite-element 

method, to develop the computational codes in order to per-

form dynamics simulations with vibration control and to 

propose an effective control scheme of a flexible single-link 

manipulator using two control strategies, namely propor-

tional-derivative (PD) and active-force (AF) controls. The 

flexible manipulator used in this paper consists of an alu-

minum beam as a flexible link, a clamp-part, a servo motor 

to rotate the link, and a piezoelectric actuator to control 

vibration. Computational codes on time history responses, 

FFT (Fast Fourier Transform) processing, and eigenval-

ues–eigenvectors analysis were developed to calculate the 

dynamic behavior of the link. An end-effector that treated as 

a concentrated mass was introduced to demonstrate a com-

plete flexible single-link manipulator system. Furthermore, 

the PD and AF control strategies were designed to suppress 

the vibration. It was done by adding bending moments gen-

erated by the piezoelectric actuator to the single link. Finally, 

their performances were compared through the calculations.

2  Formulation by the finite-element method

Figure 1 shows the position vector r of an arbitrary point P 

in the link in the global and rotating coordinate frames. Let 

the link as a flexible beam has a motion that is confined in 

the horizontal plane as shown in Fig. 1. The O–XY frame is 

the global coordinate frame while O–xy is the rotating coor-

dinate frame fixed to the root of the link (z-axis is fixed). 

The unit vectors in X, Y, x, and y axes are denoted by I, J, 

i, and j, respectively. A motor is installed on the root of the 

link. The rotational angle of the motor when the link rotates 

is denoted by θ(t). The velocity vector of the arbitrary point 

P in the link at time t = t, shown in Fig. 1, is expressed by

The link has been discretized by finite elements [8]. 

Every finite element (Element i-th) has two nodes namely 

Node i and Node (i + 1). Every node (Node i) has two 

degrees of freedom, namely the lateral deformation vi(t) 

and the rotational angle ψi(t). The length, the cross-sec-

tional area, and the area moment of inertia around z-axis of 

the i-th element are denoted by li, Si, and Izi, respectively. 

Mechanical properties of every element are denoted as 

Young’s modulus Ei and mass density ρi.

(1)ṙ (x, t) = Ẋ(x, t) I + Ẏ(x, t) J.

Fig. 1  Position vector of an arbitrary point P in the link in the global 

and rotating coordinate frames

Fig. 2  Rotating coordinate frame and the link divided by the one-

dimensional and two-node elements



Artif Life Robotics 

1 3

Figure 2 shows the rotating coordinate frame and the 

link divided by one-dimensional and two-node elements. 

Then, Fig. 3 shows the element coordinate frame of the i-th 

element and an arbitrary point P in the i-th element. Here, 

there are four boundary conditions together at nodes i and 

(i + 1) when the one-dimensional and two-node element is 

used. The four boundary conditions are expressed as nodal 

vector as follows:  

Then, the hypothesized deformation has four constants 

as follows: [9]

where xi is position coordinate of the arbitrary point P in 

the xi-axis of the element coordinate frame. Then, the rela-

tion between the lateral deformation vi and the rotational 

angle ψi of the Node i is given by

Moreover, from mechanics of materials, the strain of 

Node i can be defined by

where yi is position coordinate of the arbitrary point P in 

the yi-axis of the element coordinate frame.

Furthermore, substituting derivation of Eqs. (1), (2), (4) 

to the general expressions for kinetic energy and strain 

energy of a finite element, respectively, then applying to 

Lagrange’s equation, so the equation of motion of the i-th 

element can be obtained as follows:

where Mi, Ci, Ki, and 
..

θ(t) f i are the mass matrix, damping 

matrix, stiffness matrix, and the excitation force generated 

(2)δi =
{

vi ψi vi+1 ψi+1

}T
.

(3)vi = a1 + a2xi + a3x
2
i

+ a4x
3
i
,

(4)ψi =
∂vi

∂xi

.

(5)εi = −yi

∂
2vi

∂x2
i

,

(6)Miδ̈i + Ciδ̇i +

[

K i − θ̇2(t) Mi

]

δi = θ̈ (t) f i ,

by the rotation of the motor, respectively. The matrices and 

vector in Eq. (6) are represented as

The length of the i-th element, the length from Element 

1 to i, and the Rayleigh damping factor are denoted by li, 

l1−i, and α [9], respectively.

Finally, the equation of motion of the system with n ele-

ments considering the boundary conditions is given by

3  Modeling

In this paper, we defined and used two types of computa-

tional models of the single-link manipulator.

3.1  Model A

A model of the single–link manipulator, the clamp-part, 

and the piezoelectric actuator were defined as Model A. 

Figure 4a shows Model A. The link including the clamp-

part and actuator was discretized by 22 elements. The 

clamp-part is more rigid than the link. Therefore, Young’s 

modulus of the clamp-part was set in 1,000 times of the 

link’s. The piezoelectric actuator was bonded to a one-

side surface of element 2. A schematic representation on 

modeling of the piezoelectric actuator is shown in Fig. 5. 

Furthermore, a strain gage was bonded to the position of 

Node 3 of the single link (0.11 m from the origin). Physical 

parameters of the single-link model and the piezoelectric 

actuator are shown in Table 1.

The piezoelectric actuator suppresses the vibration of 

the single-link flexible manipulator by adding bending 

moments at nodes 2 and 3 of the single-link, M2 and M3. 

The bending moments are generated by applying volt-

ages E to the piezoelectric actuator as shown in Fig. 5. The 

bending moments proportional to the voltages which are 

expressed by

(7)Mi =
ρiSili

420









156 22li 54 −13li

22li 4l
2
i

13li −3l
2
i

54 13li 156 −22li

−13li −3l
2
i

−22li 4l
2
i









(8)K i =
EiIzi

l3

i









12 6li −12 6li

6li 4l2

i
−6li 2l2

i

−12 −6li 12 −6li

6li 2l2

i
−6li 4l2

i









(9)Ci = αKi

(10)

f i =
ρiSili

60

{

30l1−i + 9li, 5l1−ili + 2l
2
i
, 21li, −5l1−ili + 3l

2
i

}T

.

(11)Mnδ̈n + Cnδ̇n +

[

Kn − θ̇2(t) Mn

]

δn = θ̈ (t) f n .

Fig. 3  Element coordinate frame of the i-th element



 Artif Life Robotics

1 3

Here d1 is a constant quantity and M2 opposites to M3.

Furthermore, the voltage to generate the bending 

moments is proportional to the strain ε of the single link 

due to the vibration. The relation can be expressed as 

follows:

Here d2 is a constant quantity. Then, d1 and d2 will be 

determined by comparing the calculated results and experi-

mental ones.

3.2  Model B

Figure 4b shows Model B that an end-effector of the sin-

gle-link manipulator is considered. Model B is used to 

show that the proposed control strategies are also suitable 

for such system. The end-effector is presented by adding 

a concentrated mass to the previous model. Therefore, the 

kinetic energy of the tip element was increased due to the 

concentrated mass.

Applying the kinetic energy and the strain energy to 

Lagrange’s equation, so the equation of motion of the tip 

element containing the concentrated mass is given by

where the vector of ficm is given by

(12)M2 = −M3 = d1E.

(13)E = ±
1

d2

ε.

(14)

[Mi + Micm] δ̈i + Ciδ̇i

+

[

K i − θ̇2(t) (Mi + Micm)

]

δi = θ̈ (t) { f i + f icm},

(15)f icm = −mc

{

0 0 l1−i + li 0
}T

,

Fig. 4  Computational models of the single-link manipulator a Model 

A single-link with piezoelectric actuator b Model B single-link with 

piezoelectric actuator and end-effector

Fig. 5  Modeling of piezoelectric actuator (top view)

Table 1  Physical parameters 

of the single-link and the 

piezoelectric actuators

l Total length m 3.91 × 10−1

ll Length of the link m 3.50 × 10−1

lc Length of the clamp-part m 4.10 × 10−2

la Length of the actuator m 2.00 × 10−2

Sl Cross section area of the link m2 1.95 × 10−5

Sc Cross section area of the clamp-part m2 8.09 × 10−4

Sa Cross section area of the actuator m2 1.58 × 10−5

Izl Cross section area moment of inertia around z-axis of the link m4 2.75 × 10−12

Izc Cross section area moment of inertia around z-axis of the clamp-part m4 3.06 × 10−8

Iza Cross section area moment of inertia around z-axis of the actuator m4 1.61 × 10−11

El Young’s Modulus of the link GPa 7.03 × 101

Ec Young’s Modulus of the clamp-part GPa 7.00 × 104

Ea Young’s Modulus of the actuator GPa 4.40 × 101

ρl Density of the link kg/m3 2.68 × 103

ρc Density of the clamp-part kg/m3 9.50 × 102

ρa Density of the actuator kg/m3 3.33 × 103

α Damping factor of the link – 2.50 × 10−4
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and the concentrated mass matrix Micm can be expressed as

where mc is the mass of the concentrated mass.

3.3  Validation of formulation and computational codes

Computational codes were developed to perform dynam-

ics simulation of the system based on the formulation that 

explained above. The validation was done using time his-

tory response analysis of free vibration, natural frequencies 

using FFT (Fast Fourier Transform) processing, vibration 

modes and natural frequencies using eigenvalues–eigenvec-

tors analysis and time history response analysis due to the 

excitation force [8].

4  Control scheme and simulations

4.1  Control scheme

A control scheme to suppress the vibration of the single 

link was designed using the piezoelectric actuator. It was 

done by adding bending moments generated by the piezo-

electric actuator to the single link. Therefore, the equation 

of motion of the system become

where the vector of un(t) containing M2 and M3 is the con-

trol force generated by the actuator to the single link.

To drive the actuator, two different control strategies 

namely PD and active-force controls have been designed 

and examined. Their performances were compared through 

calculation.

4.1.1  Proportional-derivative control

Substituting Eqs. (13)–(12) gives

Based on Eq. (17), the bending moment can be defined 

in s-domain as follows:

where εd and ε3 denote the desired and measured strains 

at Node 3, respectively. The bending moment in Eq. (19) 

will be applied to Node 2 and 3 according to the position 

(16)Micm =









0 0 0 0

0 0 0 0

0 0 mc 0

0 0 0 0









,

(17)

Mnδ̈n + Cnδ̇n +

[

Kn − θ̇2(t) Mn

]

δn = θ̈ (t) f n + un(t),

(18)M2, M3 = ±
d1

d2

ε.

(19)Un(s) = GC(s) (εd(s) − ε3(s)),

of the piezoelectric actuator; therefore configuration of the 

PD controller can be written by a vector in s-domain as 

follows:

where Kp and Kd are proportional and derivative gains of 

the PD controller, respectively.

Moreover, transfer function of the n elements flex-

ible link Gp(s) can be obtained by substituting Eq. (5) to 

Eq. (17) and transferred to s-domain using Laplace’s trans-

form. A block diagram of the PD control strategy for the 

single-link system is shown in Fig. 6.

4.1.2  Active-force control

Figure 7 shows the block diagram of the AF control that is 

proposed in this research. In this strategy, vibration of the 

system is controlled by canceling the excitation bending 

moment. The following steps are the way to estimate and 

cancel the excitation bending moments.

(20)

GC(s) =
{

0 0 0 Kp + Kd s 0 −
(

Kp + Kd s
)

0 · · · 0
}

T
,

Fig. 6  Block diagram of PD control of the flexible manipulator

Fig. 7  Block diagram of AF control of the flexible manipulator
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Firstly, the strain, ε3 at Node 3 is measured to estimate 

the lateral deformation, v3 at the Node 3. Based on the 

mechanics of materials, the relation between the strain and 

the lateral deformation can be defined as follows:

where l, x, and y are the length of the link and the position 

of Node 3 in x and y directions, respectively.

Secondly, the actual force in the s-domain acting at 

Node 3 can be defined in the form of the Newton’s equation 

of motion as follows:

where M33 is the component of the mass matrix corre-

sponding to Node 3.

Thirdly, the bending moments acting at Nodes 2 and 3 

are estimated using the following equation:

The vector d that represents the position vector from the 

reference point to the position where the excitation force 

acting can be written as follows:

Fourthly, based on Fig. 6, the excitation bending 

moments can be calculated as

where Kpa is the non-dimensional proportional gain of the 

proposed AF control.

Finally, the bending moment applying as a control force 

to control the vibration of the system can be calculated as 

follows:

where Und (s) is the desired bending moment which is zero.

The negative of Une(s) indicates that the bending 

moment is used to cancel the vibration of the system.

4.2  Calculated results

The time history responses of strains at Node 3 in the 

controlled system were calculated for Models A and B as 

shown in Fig. 4a, b. The concentrated mass, mc, used as the 

end-effector is 0.005 (kg).

Examining several gains of the PD and AF controls leaded 

to Kp = 600 (Nm), Kd = 0.005 (Nms), and Kpa = 0.83 

(–) as the better ones. Figures 8 and 9 show the uncon-

trolled and controlled time history responses for Models A 

and B, respectively. They were calculated when the motor 

rotated by the angle of π/2 radians (90°) in 0.68 (s). The 

(21)
v3

ε3

= −
x2(x − 3l)

6y(x − l)
= A,

(22)F3(s) = M33 s
2

v3,

(23)Unt(s) = ±F3(s) d.

(24)d =
{

0 0 0 l2 0 l2 0 · · · 0
}

T
.

(25)Une(s) = Kpa { Unt(s) − Un(s)},

(26)Un(s) = −Une(s) + Und(s),
maximum strain of uncontrolled system for Model A was 

452.50 × 10−6. Using PD and AF controllers, the maximum 

strain became 168.00 × 10−6 and 86.50 × 10−6, respectively, 

as shown in Fig. 8. The maximum strains of uncontrolled 

system for Model B were 907.00 × 10−6. Using PD and AF 

controllers, the maximum strain became 277.00 × 10−6 and 

148.00 × 10−6, respectively, as shown in Fig. 9. 

It was verified from these results that the vibration of 

the flexible single-link manipulator can be more effectively 

suppressed using the proposed AF controller compared to 

the PD one.

5  Conclusion

The equation of motion for the flexible single-link manip-

ulator had been derived using the finite-element method. 
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Computational codes had been developed in order to per-

form dynamics simulations of the system. The validities 

of the formulation, computational codes, and modeling 

of the system were shown by examining the experimental 

and calculated results on time history responses, natural 

frequencies, and vibration modes. The proportional-deriv-

ative (PD) and active-force (AF) control strategies were 

designed to drive the actuator. Their performances were 

compared through the calculations. The calculated results 

show the superiority of the proposed AF control comparing 

PD one to suppress the vibration of the flexible single-link 

manipulator.
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