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Abstract—This paper examines the implementation of Model
Predictive Control (MPC) for relative performance management
in a shared resources system. Finite Control Set MPC as a model-
based control is integrated in a scheme of differentiated control
for a multi classes virtualized software system. A dynamic model
is estimated in block-oriented form with nonlinear compensation
feedback system. The performance objective is to maintain
response time on the reference levels or subject to the degree of
priority between the user classes. Experiments are conducted in a
two-classes of virtualized software system for several performance
differentiation scenarios. The performance of Integral FCS-
MPC is evaluated in comparison with Proportional Integral (PI)
control. The results show that predictive control framework pro-
vides significant improvement in predictability and disturbance
rejection procedure. Therefore, Integral FCS-MPC outperforms
PI controller in terms of maintaining the stability of relative
performance objectives.

Index Terms—Model Predictive Control, nonlinear compensa-
tion, Finite Set Control, Hammerstein-Wiener, virtual machines
control, relative performance control

I. INTRODUCTION

The dynamic characteristic of a shared resources environ-
ment comprises unpredictable conditions in application work-
load and performance objectives. A self-adapting capability
will address these challenges by means of dynamic resources
management in relative configuration. However, the essential
control problem in relative management is to guarantee the
achievement of performance preferences by managing the
constraints of resources allocation between users. In addition,
control system has to deal with nonlinear dynamics of such
shared resources system. Therefore, studies about the effective
mechanism to manage relative performance management and
its nonlinearity issue have reached high attention.

Dynamic resource management regulates the resources to
share them proportionally between users with regard to the
performance references. This approach brings benefits for
resource sharing and performance properties management [1],
[2]. Existing studies proposed dynamic resource allocation
based on control engineering and non-control engineering
methods. Non-control engineering approaches utilize simple
rule-based methods [3] or complex optimization techniques
[4]. However, they have limitations in design parameters,
and lack of systematic processes to achieve system stability
[5]. In contrast, the control engineering methods provide a

systematic design process, and capability to deal with model
uncertainty. Furthermore, feedback principles have the ability
to cope with unpredictable changes in operating conditions
[6], [7]. On top of that, promising findings of feedback
control approach by [8], [9] have shown a system identification
with nonlinear compensation model to eliminate the issue of
dynamic nonlinearities.

Finite Control Set MPC (FCS-MPC) is a class of MPC
which has been proven for its algorithm simplicity to set input
operating point as the control action. Earlier works by [10],
[11] have shown that FCS-MPC is able to deal with dynamic
management challenges. FCS-MPC is one of the most well-
known predictive techniques for power converters and drives
control ( [12]). In addition, FCS-MPC is an an effective control
with direct application that covers a wide range of objectives
in power electronics applications. A brief review of recent
applications of FCS-MPC in power electronics is addressed in
[13].

This paper contributes to the implementation of Integral
Finite Control Set MPC for relative performance manage-
ment. Integral FCS-MPC optimizes the system performance
by manipulating finite control points with an addition of
integral action. Experiments are accomplished in a two-classes
virtualized software system with alternative differentiation
scenarios. In comparison with Proportional and Integral (PI)
controller, the results exhibit the robustness of Integral FCS-
MPC with better system stability in complex conditions of
resources constraints and objective preferences.

The presentation in this paper is divided into five sections.
Section II covers the description of virtualized software
system and its model structure. Section III presents the
general formulation of Integral FCS-MPC and PI controller.
The experimentation and results analyses are provided in
Section IV , followed by a brief summary in Section V .

II. SYSTEM DESCRIPTION

A. Virtualized Software System

An isolated network of virtual machines is established
to represent a shared-resources system. Figure 1 shows the
testbed architecture that comprises of server, database and
client workload simulator. RUBiS model is implemented
as the software system application to realize an auction site
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Fig. 1: Abstraction of control loop architecture in two classes
shared resource software system

Fig. 2: Structure of relative management scheme

benchmark for multi-tiers network. The server infrastructures
are shared among two virtual machines (VMs) that use
the resources correspondingly. Server takes the role as host
machine to serve the guest/client machines which are two
virtualized machines. client1 and client2 represent VM1 and
VM2, respectively. An actuator feeds the required ratio of
CPU allocation into the system, while a sensor program is
enclosed to each VM for the response time measurement of
requests workload. The virtualization procedure is executed
using Xen2.6 hypervisor with a default scheduler for propor-
tional CPU provisioning for each VM.

Relative scheme of performance management designates
a relative significance of clients and maintain the ratio of
performance metrics to the desired values. In other words,
the CPU allocation is dynamically regulated to assure the
reference value of response time can be achieved. The structure
of relative management and objectives for I clients can be seen
in Fig. 2. At sampling time k, input variable is u(k) = Cap1(k)

Cap2(k)
which provides CPU capacity entitlement for VM1 over VM2.
The share of resource allocation is in the percentage of total
CPU capacity that equals to 100%. Output response is the ratio
of measured time for the host to respond the client requests,
y(k) = RT2(k)

RT1(k)
. RT1(k) and RT2(k) represent response time

to the workloads from VM1 and VM2 respectively. The
reference value for output y(k) is determined by the preference
or priority level of each client (P1 and P2), the ratio value is
r(k) = P2(k)

P1(k)
. Increasing the resource provisioning for a VM

leads to a faster response time to its workloads.

Fig. 3: Hammerstein-Wiener structure

B. System Identification

Dynamics of virtualized software system are characterized
in block-oriented system identification. Model estimations
refer to the previous finding in [9] using a Hammerstein-
Wiener model structure. Fig.3 shows the model blocks which
consist of two nonlinear memoryless blocks and a linear dy-
namic block. The nonlinear relationship of input signal u and
intermediate input w is captured within the Hammerstein block
in an inverse static nonlinearity formulation. In Wiener block,
a linear model characterizes the linear dynamics followed by
an inverse function which approximates the nonlinearity in
B-spline function. The estimated inverse nonlinear models
are integrated as compensator for the nonlinear dynamics
in both input and output elements of feedback system. The
inverse static input nonlinearity model is in a function u(k) =
f−1(w(k)) are approximated by setting w(k) values with
wmin = −15, wmax = 15 and δw = 0.5. A polynomial
function of u(k) is derived by using leats squares estimation.

u(k) = 4.17e−7w(k)5 + 9.34e−6w(k)4+

1.02e−4w(k)3 + 0.003w(k)2+

0.08w(k) + 1.005

(1)

The nonlinear characteristic is estimated in an inverse static
nonlinear model. Input variable is y(k) and output is x(k)
which is the intermediate output variable. Thus, the repre-
sentative formulation of B-spline curve B(y(k)) is written as
follows,

x(k) =
s∑
i=0

Ni,ρ((y(k))Cpi (2)

where Ni is basis function,Cpi is control points of the curve,
and ρ is the curve order. The linear model (w(k) = f(x(k)))
is an ARX model;

x(k + 1) = 0.4201x(k) + 0.0430w(k) (3)

III. FINITE CONTROL SET - MODEL PREDICTIVE
CONTROL

FCS-MPC exploits a finite number of input states for solv-
ing the optimization function. Prediction for system response
uses the discrete model of system dynamics where all the
possible state combinations are evaluated at each sampling
time. The output are compared to the reference setting by
assessing a cost function (J). Consequently, a state with
minimum J value is selected as the optimal control input.
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Basic algorithm of FCS is a receding horizon approach with
one-step ahead estimation and on-line optimization. The value
of y(k) for estimation uses the updated value from current
measurements of output response.

Discrete model of a dynamic system is defined as,[
y1(k + 1)
y2(k + 1)

]
= A

[
y1(k)
y2(k

]
+B

[
u1(k)
u2(k)

]
(4)

The cost function which is solved in least squares optimization
is expressed below,

J =
[
r1(k) − y1(k + 1) r2(k) − y2(k + 1)

]
·[

r1(k) − y1(k + 1)
r2(k) − y2(k + 1)

]
(5)

A. Integral FCS-MPC

Optimal FCS performance will degrade in complex system
constraints because of the steady-state error. Therefore, the
Finite Control Set method is revised with the addition of
integral action in the controller, this will be denoted as Integral
FCS (IFCS). The basic objective of a finite control set is to
achieve an optimal output of feedback control by deploying a
gain matrix Kfcs. The optimal control signal u(k) is written
as, [

u1(k)opt

u2(k)opt

]
= Kfcs

([
r1(k)
r2(k)

]
−
[
y1(k)
y2(k)

])
(6)

where Kfcs denotes the feedback gain for the reference value
and the measured output response. The FCS controller gain
(Kfcs) is calculated from the equation below,

Kfcs = B−1A (7)

The integrated error signal from reference value and measured
output response are inserted into controller. An integrator in

discrete-time system is formulated as kI
1

1 − z−1
, where z−1

is the backward shift operator to represent z−1x(k) = x(k−1).
Consequently, this term is added to the basic equation of FCS
that is called Integral FCS-MPC. The revised form is expressed
as, [

u1(k)opt

u2(k)opt

]
= Kfcs

[ kI
1−z−1 (r1(k) − y1(k))
kI

1−z−1 (r2(k) − y2(k))

]
−Kfcs

[
y1(k)
y2(k)

] (8)

where kI is the integral gain for the input signal. The value
of the integral gain is in a range of 0 < kI ≤ 1. The
actual control signal u(k) for IFCS is chosen by evaluating
the objective function for all the available control signals
candidates. The u(k) value is the optimal solution of the one-
step ahead prediction algorithm in FCS.

J = (u1(k) − u1(k)opt)2 + (u2(k) − u2(k)opt)2 (9)

Fig. 4 illustrates the Integral FCS-MPC structure.
The configuration comprises an inner-loop for proportional

control and an outer-loop for integral control. The design of in-
tegral controller determines the closed-loop transfer function.

Fig. 4: Integral FCS-MPC feedback structure

Inner-loop has a proportional gain Kfcs and outer-loop has an
integral gain kI . The inner-loop feedback controller provides
relationship of u(k) and y(k),

y(k + 1) = ay(k) + bu(k) (10)

Control variable u(k) is calculated as

u(k) = Kfcs(e(k) − y(k))

where e(k) is the control signal of the outer-loop, and also
the reference value for the inner-loop. Afterwards, the outer-
loop feedback system which has an integral action, can be
designed in a straightforward manner. The outer-loop includes

a function of integral action
kI

1 − z−1
and a time delay z−1

from inner-loop. Thus, the transfer function of outer-loop
system is formulated as

Y (z)

R(z)
=

kIz
−1

1 − z−1 + kIz−1
(11)

where the closed-loop pole is selected to be 1− kI . Selection
of closed-loop pole in a range of 0 ≤ pcl ≤ 1 leads to an
integral gain kI = 1− pcl. The pole pcl is a design parameter
that is selected and predefined by user. Hence, closed-loop pole
location can be adjusted according to the desired time constant
of feedback system. With ∆y = y(k)−y(k−1), integral gain
leads to a formulation of u(k)opt which is written below,

u(k)opt = u(k − 1)opt +Kfcs(Ki(y
∗(k) − y(k)))

−Kfcs(∆y(k))
(12)

B. Proportional Integral Control

The linear model of target system is represented in transfer
function G(z) and the controller in C(z). There are four main
variables in the control loop, i.e. reference value (Rz) , control
input (Uz), measured output (Yz) and control error (Ez). The
transfer function in a first order ARX model is

G(z) =
Y (z)

U(z)
=

b1
z + a1

(13)

Proportional control is used when the control signal is assigned
to be proportional with the change of process error value
e(z) = r(z) − y(z) . The gain of proportional controller
is denoted as Kp. Integral control overcomes the drawbacks
of proportional control by reducing or eliminating the steady
offset without significantly increasing the controller gain. The
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integral gain is denoted as Ki. The transfer function for PI
controller is formulated below,

C(z) =
U(z)

E(z)
= Kp +

Ki

1 − z−1

=
(Ki +Kp)z −Kp

z − 1

(14)

Controller gains (Kp and Ki) are obtained using pole place-
ment method. It is an approach for tuning PI gains by spec-
ifying the desired closed-loop poles location. The feedback
control loop is ,

Y (z)

R(z)
=

C(z)G(z)

1 + C(z)G(z)
(15)

The denominator polynomial is also known as characteristic
equation of the control system. Therefore, the roots of polyno-
mial are equal to the desired closed-loop poles. If polynomial
function of the chosen closed-loop is,

Dcp = z2 − (cp1 + cp2)z + cp1cp2 (16)

The gains are derived by equating (15) and (16).

Kp =
cp1cp2 + a1

−b1
(17)

Ki =
(cp1 + cp2) + 1 − a1

b1
−Kp (18)

IV. EXPERIMENTATION AND ANALYSIS

Control system is integrated in a feedback control struc-
ture with nonlinear compensation technique. The compensator
function at input and output will reduce the effect of nonlinear
dynamics to the control system performance. Integral FCS-
MPC and PI controller are evaluated in three scenarios which
have been formulated to ensure constraint and disturbance
variation in operational objectives during runtime. Controller
gains are calculated with regards to the linear model in Eq.
3 by setting the desired pole values. The selection of pole
location is determined after analyzing response stability spesi-
fications, such as settling time, steady state error, overshooting,
and the flow rate of control signal. Pole positions imposing
varied behaviour of control system because the occurrence of
system nonlinearities. Thus, simulations have been conducted
in order to find the best values of poles, cp1 and cp2 are at
0.5. Using the pole location, control gains are calculated based
on Eq. 17 and 18 which leads to the value of Kp = 0.86 and
Ki = 0.13. Furthermore,controller gains for Integral FCS-
MPC are determined from equations in Section III-A that
yields to Kfcs = 9.76 and Ki = 0.5.

Scenario A : Reference > 1 : In this experiment, the

priority levels between both VMs is set to
P2

P1
= 1.5. This

reference value means that the requests from client1 get the
first priority, which means they should be responded faster than
the requests from client2. Therefore, client1 will be given
more resources than client2 during runtime. Fig. 5a shows the
workload settings for experiment in scenario A. It represents
a scenario in which higher workloads are suddenly imposed
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(c) Output response IFCS

Fig. 5: Experimental results of PI-based feedback control and
Integral FCS-MPC in scenario A

the virtual machine that has lower priority in accessing the
resources. Therefore, a robust control for CPU provisioning is
needed to sustain the preferred output response. Results in Fig.
5b-5c show the performance of both control approaches. The
statistics summary of Mean Square Error (MSE), minimum
and maximum value of output responses is presented in Table
I.

Scenario B : Reference < 1: This setting illustrates that
Client2 is more important than client1. The priority levels

between both VMs is set to
P2

P1
= 0.5. This value represents

the condition where requests from client2 need a faster
response than requests from client1. Therefore, the system
should serve client2 as the first priority, with a bigger ratio
of resource allocation. Fig. 6 shows workload settings and
measured output of each control system. The steady state error
evaluation is summarized in Table I.

Scenario C : Reference changes during runtime: In this
scenario, the level of importance of client1 and client2 is
alternately changed. This case shows the adaptation ability
to adjust resources according to the desired performance
objectives. The setpoint is maintained at 1 until the 50th
sample. Then, after the 50th sample, it is increased to 1.5.
Workload in all sampling times is 200 and 300 requests/sec
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Fig. 6: Experimental results of PI-based feedback control and
Integral FCS-MPC in scenario B

TABLE I: Statistical summary of steady state response in all
experiment settings

A B C
PI IFCS PI IFCS PI IFCS

MSE 0.11 0.09 0.04 0.03 0.03 0.01
Min 0.83 0.24 0.13 0.34 0.39 0.85
Max 3.88 2.97 1.77 1.01 2.47 2.13

for VM1 and VM2 respectively. This is a scenario in which
both virtual machines have a workload demand bigger than the
nominal value. Priority level of the VM with higher workload
is reduced in the middle of runtime. This change causes the
VM with higher demand to be granted lower priority access
to resources. The workload setting and output responses are
captured in Fig. 7. The experiment results and statistics
have shown that model-based predictive control in a form of
Integral FCS provides more robust performance management
for virtualized software system compare to PI-based feedback
control. The MSE values of IFCS control system are main-
tained smaller than the PI in all experiments. When reference
signals were placed in sensitive region, disturbances were
rejected efficiently under high workloads. For underload and
overload conditions in scenario A and B, the response time
output of PI system contains larger steady state error than IFCS
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Fig. 7: Experimental results of PI-based feedback control and
Integral FCS-MPC in scenario C

control. This analysis can be defined from the maximum and
minimum value of output response. Further evaluation is based
on the overshoot of signal response in all scenarios. A higher
overshoots of transient response exhibit a lower adaptability of
control system to deal with unpredictable changes of operating
system.

Moreover, it can be seen from the output responses in
scenario C that the controllers can adapt responsively to
the changes in reference value of priority level. Accordingly,
it is clear that Integral FCS-MPC algorithm improves the
predictability and disturbance rejection capability of control
system. Another considerable factor that improves the control
performance is the novel approach for model estimation which
contributes to nonlinear compensation of system dynamic.
These findings will complement the previous studies for per-
formance management that have implemented basic MPC [8]
and subspace-based MPC [14].

V. CONCLUSIONS

The Integral Finite Control Set MPC has been studied and
implemented for relative performance management and re-
source provisioning in a shared resources system. Based on the
output response from complex scenarios of experimentation,
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it can be inferred that feedback control system with IFCS
demonstrates more robust response in any changes of reference
value and workload disturbances. IFCS control system yields
to smaller steady state error than the response from PI-based
controller. All performance improvements are caused by the
prediction nature of MPC framework with an addition of
integral action. Therefore, in any scenario of disturbance and
service differentiations, the system will adaptively respond
without sacrificing the steady state condition.
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