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Abstract: This paper deals with data-driven predictive control for relative performance management in
virtualized software system. The system dynamics are characterized in Hammerstein-Wiener structure
to capture nonlinear and linear characteristics. The proposed control approach is the implementation of
Subspace-based Predictive Control with the integration of nonlinear compensation. The compensator
functions are inverse static input and output nonlinearity models from the Hammerstein-Wiener system
identification. The subspace predictors are formulated from the linear model input and output of Wiener
block. The experimental results from three scenarios of performance objectives show the reliability of
Subspace-based Predictive Control to manage the virtualized software system.
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1. INTRODUCTION

Data-driven predictive control is a synthesized technique of
system identification with control system design which is also
called as Subspace-based Predictive Control (SPC). This ap-
proach incorporates the subspace state space estimation into
Model Predictive Control (MPC) structure. Series of earlier
works in this class of control and identification approach have
been conducted by Di Ruscio and Foss (1998); Favoreel et al.
(1998); Kadali et al. (2003); Barry and Wang (2004); Mardi
and Wang (2009). The novelty of SPC is the use of subspace
linear predictor to estimate the future output of the system with-
out performing explicit parameterization of the conventional
model. Subspace identification method identifies certain matri-
ces to capture the relationship between the process inputs and
outputs in non-parametric coefficients form. Then, the future
output of the system is predicted by a linear function of past
input, past output, and future input values. In addition, SPC is
numerically robust and very attractive for on-line implementa-
tion since it uses QR-decomposition to generate the subspace
coefficients directly from I/O data.

Model Predictive Control (MPC) is a model-based control
algorithm which objective is to find the future control input
in a finite-time prediction horizon. The control algorithm is
formulated upon a numerical minimization of a cost function
in a receding horizon principle. The design of MPC use the
system matrices obtained from subspace system identification
with a guarantee of reducing design complexity for MPC gain
calculations from the real experiment data. The system matrices

of dynamic model are not explicitly composed since SPC only
implementing the subspace predictor variable.

In a virtualized software systems, the provider serves multi-
ple customers by managing a single physical environment to
deliver the required performance properties. The main control
objective is to perform dynamic resource management where
the resources can be allocated efficiently among the clients
during runtime. The performance management could be carried
out for absolute or relative management objective. In the case of
relative scheme, the preferences consideration of performance
properties and resource provisioning between the client classes
lead to a severe nonlinear dynamics which can be observed
at the system input and output. Some constituted factors in
software systems, namely demand changes and complex pref-
erences for performance objectives, could provoke noisy char-
acteristics to the environment in management implementation.
For noisy system, block-oriented Hammerstein-Wiener struc-
ture is considered as a favorable and generic class for dynamic
model estimation (Lennart (1999)) since the approach is re-
liable in system identification for a process with significant
nonlinearity issues. To proceed control engineering technique
in virtualized software systems, the linear and nonlinear dy-
namics should be characterized. A useful approach to compen-
sate the nonlinear dynamics in Hammerstein-Wiener structure
is by estimating the nonlinearities in their inversion functions
(Kalafatis et al. (1997)). Studies by the authors in Patikirikorala
et al. (2012); Aryani et al. (2014, 2016b) exhibited the effi-
cacy of system identification in Hammerstein-Wiener manner
to identify the linear and nonlinear characteristics of shared
resources environment .
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The main contribution of this paper is the implementation of
control system design using Subspace Predictive Control with
nonlinear compensation in Hammerstein-Wiener structure for
virtualized software system. Input and output data set for this
study are generated from the experimental testbed of two-
clients virtualized software system. The linear model is rep-
resented by non-parametric Frequency Sampling Filter (FSF)
model and the input and output nonlinearities are formulated
in polynomial functions. The estimation of linear and nonlinear
models parameters in Wiener block is performed in a straight-
forward manner. Nonlinear elements are estimated in inverse
form since these functions are used as pre-input and post-
output nonlinear compensators in the control system loop. This
approach could reduce the impact of nonlinearities for relative
performance management in virtualized software system.

Presentation in the paper is structured in seven sections. Section
2 covers the dynamic description of virtualized software sys-
tem, Section 3 presents the Hammerstein Wiener system iden-
tification, then the formulation of Subspace-based Predictive
Control is addressed in Section 4. The identification results and
SPC design are shown in Section 5, followed by the feedback
control results in section 6. Section 7 delivers conclusion based
on the results from experiments in several runtime scenarios.

2. DYNAMIC SYSTEM DESCRIPTION
2.1 Virtualized software System

A real system of virtualized software environment is estab-
lished using RUBIS application. It is a multi-tiers applica-
tion of e-commerce website which channeling the dynamics
of ebay.com. RUBIS has been a favourable application in the
studies of software system management (eg. Patikirikorala et al.
(2012)). The computing infrastructures are shared among the
installed virtual machines. Three elements are operated and
connected on an isolated network. A server machine, a database
and a client simulator are set up to run the application. The
virtualization using Xen2.6 hypervisor which comes with a
credit-based scheduler for allocating the resources for the VMs
proportionally. To support this scheduler, an actuator was in-
stalled to send the preferred ratio of resources to the system
and a sensor component was added to each VM to calculate the
response time of incoming requests. For this study purposes,
the virtualized software system experiments are carried out in
relative performance management scheme. Figure 1 shows the
testbed structure.

Server
Cap, Ra
Cap./Capy| Resource > VM a > Response | Ro/Ra
—p sharing Time Ratio [——p
calculation | €aPe VM b Ro Calculation
A
Client

. Database

(Workload simulator)

Fig. 1. Virtualized software system
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Fig. 2. Hammerstein-Wiener structure

2.2 Dynamic Nonlinearities

In relative guarantee management scheme, input and output
variable setting are defined as the ratio values of the two
VMs variables. Cap,(k) and Capy(k) are the CPU allocation
VM, and VM, respectively, where the total CPU capacity
Cap;orar = Capy+ Capyp. The input variable is u(k) = M.
Capy (k)

The portion of resource sharing is in the percentage of to-
tal CPU capacity where full CPU capacity equals to 100%.
Therefore, to prevent a shortage of resources when workload
requests suddenly increase in unpredictable condition, CPU
share is constrained to a minimum capacity. In this experiment,
Capamin(k),Capp min(k) = 20 and Cap; ot = 100. Output vari-
able y(k) is the measured response time from each virtual
machine. RT,(k), RT,(k) are response time to the workloads
of VM, and VM,, respectively. The output variable is y(k) =
RT} (k)

RT, (k)

It is clear that nonlinearities in input and output variables are
caused by the ratio formulation between the VMs variable in
relative scheme.

3. SYSTEM IDENTIFICATION

This section gives a summary of the Hammerstein-Wiener sys-
tem identification for virtualized software system dynamics.
Figure 2 shows the block structure where nonlinear memory-
less blocks are sandwiched by a linear dynamic block. In the
Hammerstein block, a nonlinear model is assigned to get the
relationship between input signal # and intermediate input w in
the form of inverse static nonlinearity function. The estimated
model will be employed as compensator for the nonlinear char-
acteristic of the input element. In Wiener block, the linear
model is represented in Frequency Sampling Filters function.
Moreover, the output nonlinear model is estimated in terms of
inverse static nonlinearities by assigning a polynomial function
as the predicted nonlinear model.

3.1 Linear model

The linear model is estimated in Frequency Sampling Filters
(FSF) function. This model is used to deal with high dimen-
sionality estimation issue when using Finite Impulse Response
(FIR). FSF coefficients of the linear model are captured in fre-
quency domain which is acquired from a linear transformation
of FIR and composed of narrow bandpass filters (Wang and
Cluett (1997)).

1 1-zM
M 1 —e‘j“’lz_l )W(k)9
m—1
2 .
Y G filk) (D

_m=1
- 2

Let fi(k) = (

x(k) =
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Equation 1 represents the j-th FSF with w; = % as the center

frequency in / =0,%+1,£2,--- ,:i:’"T_l. m is the effective order
which indicates the significant parameters of FSF model and
M represents the order of individual FSF filters corresponding
to the process settling time M = T/t and Ot is a sampling
interval. m should be much smaller than M and in odd number.

3.2 Input and output nonlinearities

The estimated function of nonlinear model in Hammerstein
block is formulated in an inverse relationship of input u
and intermediate input w (u(k) = f~'(w(k)). For this study,
the operating points is configured to be n = 61 points (u =
Uy, up,uz, - ;unflvun)
20 21 50 79 80

‘7807797507217 20
. Firstly, the operating points u are transformed to a range of
evenly spaced operating points. The technique was formulated
by defining an intermediate variable w where wyi, <w < Wygy.
To have an equally spaced operating points, a fixed deviation is
Wmax — Wmin

n—1

W=W1,Wa, W3, , Wy

determined by dw =

where wi = Wyin, w2 = w1 + 0w, w3 = wo + 6w and w, = Wyax.
Secondly, the respective operating points of input u; is mapped
to the w; points. Furthermore, the relationship between data
pairs from the mapping is estimated in a polynomial function

u(k) = = (w(k)),

u(k) = oo+ ayw(k) + cow(k)* + - - + auw(k)*
Accordingly, the coefficients of u(k) function are approximated
by using least squares method, see (Aryani et al. (2016b)).

Nonlinear element in Wiener block represents the relationship
of output y and intermediate output x in its inverse function
x(k) = g~ ' (y(k)). This function is used as a post-output nonlin-
ear compensator in the feedback control structure. In a similar
way with the pre-input compensator, the post-output compen-
sator is estimated in a polynomial function

x(k) = Bo+ Bry(k) + Boy(k)* + -+ Bpy(k)* ()

Furthermore, model parameters of linear and inverse static
output nonlinearity models are approximated in a one-step
manner by equating the x(k) functions from (1) and (2). It leads
to a process output function. With an assumption that inverse
static function is a single-valued smooth function and f; = 1,
the output function is formulated as follows

S0 = Y G fiwk) — o Bay(k) — -~ Py(k)”

J—— m—1

2
Afterwards, the model parameters of linear and inverse static
output nonlinearity are obtained by implementing least squares
estimation.

4. SUBSPACE-BASED PREDICTIVE CONTROL
This section provides the algorithms of Subspace-based Pre-

dictive Control. Starts with a state-space description of a linear
time invariant model :

X(k+1) = Axy + Buy + Key,
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Vi = Cx + Duy + e
where u; € R is the input variable, y, € R’ is the output,
x; € R" is the state variable of the system and ¢; € R’ is white
noise disturbance.

The subspace I/O matrix equations in the field of subspace
system identification are constructed by recursively substituting
the system equations.

Y, =TuX, +HyU, + HYE, A3
Yy =TuXy + HijUp + Hy Ey @
Xy =AMX, + AL U, + AYE, )

The subscripts "p’ and ’f’ denote the past and future matrices.
Based on Equation (3 - 5), data matrices are calculated as shown
below:

up up ©UN—f—p+1
up u3 © UN—f—pt2
U,= .

MP up+1 e uN—f
Uptr1 Upi2 © UN—f+1
Up+2  Up43 © UN—f+2

U= . . .

Up+f Uptf+1 "+ UN

As the reference, these Hankel matrices have particular com-
position where the off-diagonal elements are similar, and the
dimensions of the matrices are ¥,,,Y, € RMN-2M+1 17 1y, ¢

RMmeN=2M+1 Eyrthermore, the state sequences are defined as
Xj-1]

XN+j—1]

Xp=[X0 X1 -+~
Xf:[-xN XN+41 -
Y,

p _
UJ The for

mulation for optimal future output prediction can be written in
subspace predictor equations as follows,

Yy =L,W,+LUy (6)
The prediction of Y} can be solved from its corresponding least
squares problem formulation below

Y, [Ly L] [VUV;’} ) )

Furthermore, the solution of minimization problem in Eq. 7 is
the orthogonal projection of the row space of Y into the row

o W,
/1

g / % Y W}’T Bﬂ )

where 1 is Moore-Pendrose pseudoinverse. This projection
can be implemented in a mathematically powerful approach
by undertaking a QR-decomposition of matrix [WPTUJT YfT}T
to generate the lower triangular matrix R and the orthogonal
matrix Q (Favoreel et al. (1998)).

By concatenating matrices ¥, and U, in W), = {

2
min
Ly,Ly

W,
space of matrix [ Uf} .

W, Rip 0 071

Up| = |R2t Rz 0| |2

Yy R31 R3x R3z] O3
——

R o
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Then, by applying the decomposed matrix above into Eq. 8, the
subspace linear predictor can be calculated as follows,
+
R]] 0
L=|L, L,)=|R31 R
L L] = [Rst Ry [RZI Rzz]
For the MPC algorithm, the subspace predictor in Eq. 6 is
transformed into receding function breaking down the value of

wp = W§;1 +Aw, and uy = uzf_] +Auy.

95 = LuAwy + LyAup + Lyw, | +Losy )

Because the last two terms of Eq. 9 are the predictor that shifted
backwards by single time step, it yields the y; equation to be

Prt1 Vi
Vt+2 Vi
Jr=1| . | =LsAwp+L,Aus+
t+f t+f—1
Finally, the prediction of future output in Subspace-based Pre-
dictive Control approach is formulated in the function below,

¥¢ = By + TiLyAwy, + 1L, Aug (10)
where
I L0 -0
I nirn---0
F= T=1: . -
1 LL

However, since the signature algorithm of MPC is that the only
input values in the first N, time steps will affect the output of the
system, so the coefficient L, is truncated to first N.xm columns
before it is applied in Eq. 10. N, is the control horizon and
can be equal or less than the prediction horizon (N,). The cost
function in MPC is written in a quadratic form:

J= %Au,{,CHAuf +Aug 1 an
with,
= (TuLy,) " Wo(T'\Ly,) + Wg
n= (FILNC)TWQFILWAWp +F(yr —re+1)
If there are no constraints on the system, the control signal is

calculated by differentiating the cost function (Eq. 11) with
regards to Auy, . It yields to

Auy, = —Hﬁln
—Kaw,Awp — Ke(yr —rt +1)
where KAW,, and K, are the SPC control gains
= ((CiLw,) " Wo(TiLn,) +Wr) ™ (TiLw, ) WoT'iLyy)
= ((TiLw,) " Wo(TiLn,) + W)~ (FzLNC)TWlez)

Calculation of the next control input u,; only use the first value
of Auy,.

Aupyy =

1§;§VVP~A%
Ke,NC

5. SYSTEM IDENTIFICATION RESULT AND SPC
IMPLEMENTATION

Input and output data pairs for Hammerstein-Wiener identifi-
cation are measured from the experimental test-bed in Section
II.A. 400 data samples are collected from the testbed nominal
workloads condition using multi-level sinusoidal signal as input
variable. The input signal represents three operating conditions,

Dharma Aryani et al. / IFAC PapersOnLine 50-1 (2017) 7795-7800

20 50 80

30° 50" an d — where each input level is held for 4 samples,
and each chent sent 100 requests/s. The input and output data
are plotted in Figure 3. The evaluation of model prediction
accuracy refers to the Mean Squared Error (MSE) value. MSE
measures the average of squared error between the actual data

and data from estimated model.
3
52 2
1 LUV

RLLLLLASAAURREVLARRLAAL,
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l ﬂn“ “ “,.H”m“k h,l,;J Mu 1
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Fig. 3. Data set for system identification

5.1 Hammerstein Block

The inverse static input nonlinearity model u(k) = f~!(w(k))
are approximated by setting w(k) values with wy,;, = —15,
Wiax = 15 and 6w = 0.5. Using least squares method, the poly-
nomial function is written in (13) with MSE value 0.000068.

u(k) = 4.17¢7"w(k)® +9.34eOw(k)* +1.018¢ *w(k)?

) (13)
+0.0028w (k)2 4 0.08w(k) + 1.0045

5.2 Wiener Block

Model parameters estimation is carried out based on least
squares formulation in Section //1.C. The initialized parameters
for FSF model estimation are M = 30 and m = 13. The inverse
static output nonlinearity function is in a 5 order polynomial
(Eq. 14) with MSE value 0.0082.

x(k) = 2.665¢*y(k)> — 0.0082y(k)* +0.091y(k)?

) (14)
—0.4516y(k)> + y(k) — 0.5956

5.3 SPC Implementation

In the objective to reduce the impact of dynamic nonlinearities,
the inverse static nonlinearity functions are set as pre-input and
post-output compensators, and integrated in the control system
implementation Aryani et al. (2016a). Consequently, the SPC
is designed from data pairs of w(k) and x(k) as the input and
output data, see Figure 2. Along with the nonlinear compe-
sators, this approach is called HW-SPC where the structure
is described in Figure 4. For further analysis of the SPC per-
formance, the algorithm also implemented without nonlinear
compensation which is called Linear SPC. In this approach,
SPC is designed by utilizing the data set of u(k) and y(k). In
this study, the first half of data pairs is used to calculate the
subspace predictor coefficients (L,,, Ly, ), while the second half
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Post-output w Pre-input u
—— nonlinear —» —> SPC —> nonlinear
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Post-output
nonlinear
compensator

]

Fig. 4. Feedback control loop for HW-SPC

is used to validate the coefficients. The coefficients of subspace
predictors are obtained as follows,

0.029 0.002 —0.0001 —0.002 —0.002

0.03 0.032 0.002 —0.001 —0.004
LNE = 10.031 0.033 0.032 0.001 —0.003
0.029 0.034 0.033  0.017 —0.002
0.028 0.031 0.034 0.019 0.014

-0.07 —0.09 —0.01 0.04 0.21 0.001 0.001 —0.002 —0.001 —0.005
—0.007 —0.21 —0.11 0.04 0.31 0.001 0.004 0.001 —0.003 —0.007

L,=| 002 —0.15-022 —0.050.34 —0.001 0.003 0.005 0.0001 —0.010
0.12 —0.15 —0.18 —0.16 0.25 —0.01 0.002 0.005 0.004 —0.007
0.21 —0.06 —0.18 —0.12 0.13 —0.02 —0.01 0.002 0.004 —0.003
and the SPC gains are,

K, = [0.933388]
Ky, = [~0.005 0.009 0.001 —0.02 0.11 0.05 ~0.02 ~0.11 0.031 0.03]

Initially, subspace linear predictor is calculated using the w(k)
and x(k) data from HW system identification. The first 500 data
are used to calculate the predictor coefficients and the rest 500
to validate the prediction. The data fitting is plotted in Fig. 5
with MSE value 0.06. It can be confirmed that subspace predic-
tors perform good data estimation. Accordingly, the HW-SPC
is formulated and incorporated with the nonlinear compensators
to form a feedback control.

1

()

0 100 200 300 400 500 600 700 800 900 1000
aaaaaa

Fig. 5. Validation of subspace predictor, real (—), estimation
(solid)

6. FEEDBACK CONTROL RESULTS

In feedback control loop, the target system is a virtualized
software system which requires optimization for performance
management and resource provisioning. Controller gains are
calculated using Equation (12). The feedback control perfor-
mances are evaluated in three experiments. The investigations
are carried out in the testbed runtime mode with different per-
formance differentiation ratios. The disturbances occur from
the workload changes of the VMs. The order of past and future
matrices are set to p = f = 5, and the control horizon is N, = 5.

6.1 Experiment A. Performance Differentiation Ratio = 1

In this experiment, both of the VMs are equally important
which means that the level of priority for the VMs to access
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the resources are similar. Thus, the reference value is set to
1. During runtime, the workloads are applied with similar ca-
pacity for both VMs before they are changed alternatively to
the higher capacity (see Fig. 6). The objective of this experi-
ment is to investigate system performance when the resource
demands suddenly increased away from the nominal workload.
The output signals show that the performance of HW SPC
is more satisfactory than Linear SPC considering the steady-
state behaviour of the system response. The Linear SPC shows
significant oscillation with a high steady state error after the
workload drastically increased, while the HW SPC provide a
better steady state performance.

Workload
™
3
s

10 20 30 40 50 60 70 80
Data Sample

(a) Workloads disturbance

90 100 110 120

o
a

N
)

@

o

Response Time Ratio (y)

Response Time Ratio (y)

@

o

0 20 40 60 80 100 120 0 2 4‘5 0 E‘C \Sg 120

Sample Id Sample Id

(b) Linear SPC (c) HW SPC

Fig. 6. Experiment A. Performance Differentiation Ratio = 1

6.2 Experiment B. Performance Differentiation Ratio > 1

In this case, VM, is more important than V. M}, and the reference
point is set to 1.3. This setting leads the control system to
allocate fewer resources to VM), as the less important VM. The
workloads for both VMs are at the nominal capacities in the first
half of the experiment then workload for VM), is increased for
the rest of experiment. This is the scenario when VM), has fewer
resources but its workloads are much higher than VM,. The
workload changes and output responses from the experiment
are presented in Figure 7. The MSE values of Linear SPC
and HW SPC are 0.1928 and 0.0882, respectively. The control
output signals for this case show that HW SPC performance
management outperforms the Linear SPC.

6.3 Experiment C. Performance Differentiation Ratio < 1

This experiment evaluates the control performance when VM),
is more important than VM,. The reference point is 0.7 and
the workload of VM, is increased in the middle of runtime.
The output response in Fig. 8 reveals that the Linear SPC
has stability issues when disturbance are given to the system.
The MSE values of Linear SPC and HW SPC are 0.1307 and
0.0584, respectively. The output response from all experiments
indicate that the integration of nonlinear compensator in feed-
back control loop provides significantly better system stability
to deal with performance differentiation ratio setting and the
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Workloads
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(a) Workloads disturbance
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Sample Tine

(c) HW SPC

W s w
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(b) Linear SPC

Fig. 7. Experiment B. Performance Differentiation Ratio > 1

Workload
g

0 10 20 30 40 50 60 70 80 90 100
Data Sample

(a) Workloads disturbance

5w 0 @ %W wow W & _w_ & n
Sanpe Tme: Sampe Tine

(b) Linear SPC (c) HW SPC
Fig. 8. Experiment C. Performance Differentiation Ratio < 1

workloads disturbance. This control approach can be imple-
mented in other scenarios of shared resources environment with
more virtual machines in the system. An extended amount of
virtual machines will lead to a more complex differentiation
ratio of performance objectives.

7. CONCLUSION

Data-driven predictive control has been implemented in virtu-
alized software system with an advancement of nonlinearities
compensation from the Hammerstein-Wiener system identifi-
cation. The compensator reduces the impact of nonlinearities
in relative performance management scheme. The output re-
sponse evaluations from different scenarios have proven that
HW SPC approach provides better performance management
and disturbance rejections capability compared to Linear SPC.
It can be concluded that the proposed approach contributes
to the performance stability of a data-driven control class in
application to virtualized software system.
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