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Abstract 

The purposes of this research are to derive the equations of motion of a flexible two-link 

system by a finite-element method, to develop computational codes in order to perform 

dynamics simulations with vibration control and to propose an effective control scheme of a 

flexible two-link manipulator. The flexible two-link manipulator used in this paper consists 

of two aluminum beams as flexible links, two clamp-parts, two servo motors to rotate the 

links and two piezoelectric actuators to control vibration. Computational codes on time 

history responses, FFT (Fast Fourier Transform) processing and eigenvalues - eigenvectors 

analysis were developed to calculate the dynamic behavior of the links. Furthermore, a 

control scheme using the piezoelectric actuators was designed to suppress the vibration. Two 

proportional-derivative (PD) controllers were designed and demonstrated their performances. 

The calculated results of the controlled two-link manipulator revealed that the vibration of the 

flexible manipulator can be controlled effectively. 

 

Keywords: Finite-element method, flexible manipulator, piezoelectric actuator, vibration 

control.  

 

1. Introduction 

Employment of flexible manipulators is recommended in the space and industrial 

applications in order to accomplish high performance requirements such as high-speed 

besides safe operation, increasing of positioning accuracy, and lower energy consumption, 

namely less weight. However, it is not usually easy to control a flexible manipulator because 

mailto:y861008b@mails.cc.ehime-u.ac.jp
mailto:okamoto.shingo.mh@ehime-u.ac.jp
mailto:kadir_muhammad@yahoo.co.id
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of its inheriting flexibility. Deformation of the flexible manipulator when it is operated must 

be considered by any control. Its controller system should be dealt with not only its motion 

but also vibration due to the flexibility of the link. 

 

The purposes of this research are to derive the equations of motion of a flexible two-link 

system by a finite-element method, to develop computational codes in order to perform 

dynamics simulations with vibration control and to propose an effective control scheme of a 

flexible two-link manipulator. The flexible two-link manipulator used in this paper consists 

of two aluminum beams as flexible links, two aluminum clamp-parts, two servo motors to 

rotate the links and two piezoelectric actuators to control vibration. Computational codes on 

time history responses, FFT (Fast Fourier Transform) processing and eigenvalues - 

eigenvectors analysis were developed to calculate the dynamic behavior of the links. Finally, 

two proportional-derivative controllers were designed to suppress the vibration. It was done 

by adding bending moments generated by the piezoelectric actuators to the two-link system. 

 

2. Formulation by Finite-Element Method 

The links have been discretized by finite-elements. Every finite-element (Element i) has two 

nodes namely Node i and Node (i+1). Every node (Node i) has two degrees of freedom [1] - 

[5], namely the lateral deformation vi(x,t), and the rotational angle ψi(x,t) . The length, the 

cross-sectional area and the area moment of inertia around z-axis of every element are 

denoted by li, Si and Izi respectively. Mechanical properties of every element are denoted as 

Young’s modulus Ei and mass density ρi.   

 

2.1 Kinematics 

Figure 1 shows the position vectors rp1 and rp2 of arbitrary points P1 and P2 on Link 1 and 

Link 2 in the global and rotating coordinate frames. Let the links as flexible beams have a 
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O-XY  : Global coordinate frame 

o1-x1y1  : Rotating coordinate frame fixed to Link 1 

o2-x2y2 : Rotating coordinate frame fixed to Link 2 

rp1,  rp2 : Position vectors of the arbitrary points p1 and p2 in the X-axis of the O-XY 

θ1   : Rotational angle of the first motor 

θ2     : Rotational angle of the second motor 

Xp1,  Xp2  : Coordinates of the arbitrary points p1 and p2 in the X-axis of the O-XY 

Yp1, Yp2 : Coordinates of the arbitrary points p1 and p2 in the Y-axis of the O-XY 

νp1  : Lateral deformation of the arbitrary point p1 on Link 1 in the o1-x1y1 

νp2  : Lateral deformation of the arbitrary point p2 on Link 2 in the o2-x2y2 

ψe  : Rotational angle of the end-point of Link 1 

ve  : Lateral deformation of the end-point of Link 1 

L1  : Length of Link 1 

Fig. 1: Position vectors of arbitrary points P1 and P2 in the global and 

 

motion that is confined in the horizontal plane as shown in Fig. 1. The O – XY frame is the 

global coordinate frame with Z-axis is fixed. Furthermore, o1 – x1y1 and o2 – x2y2 are the 

rotating coordinate frames fixed to the root of Link 1 and Link 2, respectively (z1-axis and 

z2-axis are fixed). The unit vectors in X, Y, x1, y1, x2 and y2 axes are denoted by I, J, i1, j1, i2 

and j2, respectively. The first motor is installed on the root of Link 1. The second motor that 

treated as a concentrated mass is installed in the root of Link 2. The rotational angles of the 

first and second motor when the links rotate are denoted by θ1(t) and θ2(t). Length of Link 1 

is donated by L1. Lateral deformation of the arbitrary points P1 and P2 in the first and the 

second links are donated by vp1 and vp2, respectively. Lateral deformation and rotational angel 
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of the end-point of the first link are donated by ve and ψe, respectively. The position vectors 

rp1 and rp2 of the arbitrary points P1 and P2 at time t = t, measured in the O – XY frame shown 

in Fig. 1 are expressed by 

 

 
In this research, there are four boundary conditions together at nodes i and (i+1) when the 

one-dimensional and two-node element is used. The four boundary conditions are expressed 

as nodal vector as follow [6]  

 

Then, the relation between the lateral deformation vi, the rotational angle ψi and the strain εi 

of Node i can be found in [1] - [5].  

 

2.2 Equations of Motion 

Equations of motion of Element i on Link 1 and Link 2 are respectively given by   

 

 

where Mi, Ci, and Ki, are the mass matrix, damping matrix, stiffness matrix of Element i on 

Link 1 and Link 2. Vectors of fi and gi are the excitation vectors on Link 1 and Link 2. The 

representation of the matrices and the vector of fi can be found in [1] and [3]. The vector of gi 

can be defined by 

 

 

    Finally, the equations of motion of Link 1 and Link 2 with n elements considering the 

boundary conditions is given by 

 

 



177 

 

 

3. Validation of the Formulation 

3.1 Experimental Model 

Figure 3 shows the experimental model of the flexible two-link manipulator. The flexible 

manipulator consists of two flexible aluminum beams, two clamp-parts, two servo motors and 

the base. Link 1 and Link 2 are attached to the first and second motors through the 

clamp-parts. Link 1 and Link 2 are connected through the second motor. Two strain gages are 

bonded to the position of 0.11 [m] and 0.38 [m] from the origin of the two-link system. The 

first motor is mounted to the base. In the experiments, the motors were operated by an 

independent motion controller. 

 

 

Fig. 3: Experimental model of the flexible two-link manipulator 

 

3.2 Computational Models 

In this research, we defined and used three types of computational models of the flexible 

two-link manipulator. 

 

3.2.1 Model Ⅰ 

A model of only a two-link manipulator was used as ModelⅠ. Figure 5.a shows Model Ⅰ. 

The links and the clamp-parts were discretized by 35 elements. Two strain gages are bonded 

to the position of Node 6 and Node 22 of the two-link (0.11 [m] and 0.38 [m] from the origin), 

respectively. 

 

3.2.2Model Ⅱ 

A model of the flexible two-link manipulator including one piezoelectric actuator was 

defined as Model Ⅱ. Figure 5.b shows model Ⅱ. The piezoelectric actuator was bonded to 

the one surface of Element 4. The links including the clamp-parts and the piezoelectric 

actuator were discretized by 36 elements.  
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The piezoelectric actuator suppresses the vibration of the two-link flexible manipulator by 

adding bending moments at Nodes 3 and 6 of the two-link manipulator, M3 and M6. The 

bending moments are generated by applying voltages E1 to the piezoelectric actuator. The 

bending moments proportional to the voltage which are expressed by 

 

 

Here d11 is a constant quantity and M3 opposites to M6. 

Furthermore, the voltage to generate the bending moments is proportional to the strains ε1 of 

the two-link due to the vibration. The relations can be expressed as follows 

 

Here d21 is a constant quantity. 

 

3.2.3 Model Ⅲ 

A model of the flexible two-link manipulator including two piezoelectric actuators was 

defined as Model Ⅲ. Figure 5.c shows Model Ⅲ. The piezoelectric actuators were bonded 

to the one surface of Elements 4 and 20. The links including the clamp-parts and the 

piezoelectric actuators were discretized by 36 elements. Schematic representations on 

modeling of the piezoelectric actuators are shown in Fig. 4. Physical parameters of the 

flexible two-link manipulator model and the piezoelectric actuators are shown in table 1. 

The first piezoelectric actuator suppresses the vibration of the two-link flexible manipulator 

by adding bending moments at Nodes 3 and 6 of the two-link manipulator, M3 and M6. The 

second piezoelectric actuator suppresses the vibration of the two-link flexible manipulator by 

adding bending moments at nodes 19 and 22 of the two-link manipulator, M19 

and M22. The bending moments are generated by applying voltages E1 and E2 to the actuators. 
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Table 1: Physical parameters of the flexible two-link and the piezoelectric actuators 

 

The bending moments proportional to the voltages which are expressed by Eq. (9) and 

 

 

Here d12 is a constant quantity and M19 opposites to M22. 

Furthermore, the voltages to generate the bending moments are proportional to the strains ε1 

and ε2 of the two-link due to the vibration. The relations can be expressed by Eq. (10) and  

 

 

Here d22 is a constant quantity. Then, d11, d12, d21 and d22 will be determined by comparing the 

calculated results and experimental ones. 
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Fig. 4: Modeling of piezoelectric actuators: (a) Modeling of Actuator 1, (b) Modeling of 

Actuator 2 

 

 

Fig. 5: Computational models of the flexible two-link manipulator 

 

3.3 Time History Responses of Free Vibration 

Experiment on free vibration was conducted using an impulse force as an external one. 

Figure 6.a shows the experimental time history response of strains, εe on the free vibration at 

the same position in the calculation (0.11 [m] from the origin of the two-link system). 

Furthermore, the computational codes on time history response of ModelⅠwere developed. 

Figure 6.b shows the calculated strains at Node 6 of ModelⅠunder the impulse force. 
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Fig. 6: Time history responses of strains on free vibration: (a) Experimental strains at 0.11 [m] from 

the origin of the two-link, (b) Calculated strains at Node 6 of ModelⅠ 

 

3.4.4 FFT (Fast Fourier Transform) Processing 

Both the experimental and calculated time history responses of strains on free vibration were 

transferred by FFT processing to find their frequencies. Figures 7.a and 7.b show the 

experimental and calculated natural frequencies of the flexible two-link manipulator, 

respectively. The first experimental natural frequency, 1.79 Hz agreed with the calculated one, 

1.80 Hz. The second experimental natural frequency could not be measured. However, in the 

calculation, it could be obtained as 8.95 Hz.  

 

 

Fig. 7: Natural frequencies: (a) Experimental natural frequency of the flexible two-link, (b) 

Calculated natural frequencies of ModelⅠ 

 

3.5 Eigen-values and Eigen-vectors Analysis 

The computational codes on Eigen-values and Eigen-vectors analysis were developed for 

natural frequencies and vibration modes. The calculated results for the first and second 

natural frequencies were 1.79 Hz and 8.92 Hz, respectively. The vibration modes of natural 

frequencies are shown in Fig. 8. 
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Fig. 8: Vibration modes and natural frequencies 

 

3.6 Time History Responses Due to the Base Excitations 

Another experiment was conducted to investigate the vibration of the flexible two-link due to 

the base excitations generated by rotation of the motors. In the experiment, the motors were 

rotated by the angle of π/2 radians (90 degrees) within 0.50 [s]. Figures 9.a and 10.a show the 

experimental time history responses of strains of the flexible two-link due to the motors’ 

rotation at 0.11 [m] and 0.38 [m] from the origin of the link, respectively. Furthermore, based 

on Figures 9.a and 10.a, the time history response of strains at Node 6 and Node 22 of Model

Ⅰwere calculated as shown in Figures 9.b and 10.b, respectively. 

      

 

Fig. 9: Time history responses of strains due to base excitation: (a) Experimental strains at 0.11 [m] 

from the origin of the two-link, (b) Calculated strains at Node 6 of ModelⅠ 
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Fig. 10: Time history responses of strains due to base excitation: (a) Experimental strains at 

0.38 [m] from the origin of the two-link, (b) Calculated strains at Node 22 of ModelⅠ 

 

4. Control Scheme and Simulations 

4.1 Control Scheme 

A control scheme to suppress the vibration of the two-link system was designed using one 

and two piezoelectric actuators. It was done by adding bending moments generated by the 

piezoelectric actuators to the two-link system. To drive the actuators, two 

proportional-derivative (PD) controllers have been designed and examined.  

 

4.1.1 Using a Piezoelectric Actuator 

The piezoelectric actuator suppresses the vibration of the two-link flexible manipulator by 

adding bending moments at nodes 3 and 6 of the two-link manipulator, M3 and M6. Therefore, 

the equation of motion of Link 1 become  

 
where the vector of u1n containing M3 and M6 is the control force generated by the actuator to 

the two-link system.  

Based on Eq. (9) and Eq. (10) the bending moments can be defined in term of the 

PD-controller as follows  

 

 

where εd and ε6 denote the desired and measured strains at Node 6, respectively.  

 

A block diagram of the PD-controller for the two-link system using one actuator is shown in 

Fig. 11. 
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Fig. 11: Block diagram of PD-controller of the flexible two-link manipulator using a  

 

4.1.2 Using Two Piezoelectric Actuators 

The first piezoelectric actuator suppresses the vibration of the two-link flexible manipulator 

by adding bending moments at Nodes 3 and 6 of the two-link manipulator, M3 and M6, as 

explained in sub-chapter 4.1.1. The second piezoelectric actuator suppresses the vibration of 

the two-link flexible manipulator by adding bending moments at Nodes 19 and 22 of the 

two-link manipulator, M19 and M22. Therefore, the equation of motion of Link 1 is shown in 

Eq. (13) and the equation of motion of Link 2 in given by  

  

 

where the vector of u2n containing M19 and M22 is the second control force generated by the 

second piezoelectric actuator to the two-link system.  

Based on Equations (9), (10), (11) and (12) the bending moments can be defined in term of 

the first and second PD-controllers as follows  

 

 
where εd, ε6 and ε22 denote the desired and measured strains at Node 6 and Node 22, 

respectively.  

A block diagram of the PD-controls for the two-link system using two actuators is shown in 

Fig. 12. 
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Fig. 12: Block diagram of PD-controllers of the flexible two-link manipulator using two 

piezoelectric actuators 

 

4.2 Calculated Results 

Time history responses of strains at Node 6 and Node 22 on the uncontrolled and controlled 

system were calculated for Models Ⅱ and Ⅲ when the first and second motors rotated π/4 

radians (45 degrees) and π/2 radians (90 degrees) within 0.50 [s], respectively. Time history 

responses of strains on the controlled system for Models Ⅱ and Ⅲ were calculated under 

control scheme shown in Figures 13 and 14, respectively.  

 

     

 

Fig. 13: Calculated time history responses of strains for uncontrolled and controlled 

Model Ⅱ due to the base excitations: (a) at Node 6, (b) at Node 22 
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Fig. 14: Calculated time history responses of strains for uncontrolled and controlled 

Model Ⅲ due to the base excitations: (a) at Node 6, (b) at Node 22 
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Examining several gains of the PD-controller using one actuator leaded to Kp = 2 [Nm] and Kd  

= 0.6 [Nms] as the better ones. Furthermore, examining several gains of the PD- controllers 

using two actuators leaded to Kp1 = 2 [Nm], Kd1 = 0.6 [Nms], Kp2 = 40 [Nm] and Kd2 = 10 [Nms] 

as the better ones. The controller gains were examined considering the maximum output forces 

of the actuators. Figures 13 and 14 show the uncontrolled and controlled time history responses 

of strains for Models Ⅱ and Ⅲ, respectively. The maximum strains of uncontrolled system for 

Model Ⅱ at Node 6 and Node 22 were 948.30 × 10
-6

 and 58.55 × 10
-6

, respectively. By using 

PD-controller they become 453.50 × 10
-6

 and 39.13 × 10
-6

, respectively, as shown in Figures 

13.a and 13.b. The maximum strains of uncontrolled system for Model Ⅲ at Node 6 and Node 

22 were 987.80 × 10
-6

 and 51.56 × 10
-6

, respectively. By using PD-controller they become 

418.50 × 10
-6

 and 29.30 × 10
-6

, respectively, as shown in Figures 14.a and 14.b.  

It was verified from these results that the proposed control scheme can effectively suppress the 

vibration of the flexible two-link manipulator even though using only one piezoelectric actuator. 

 

5. Conclusion 

The equations of motion for the flexible two-link manipulator had been derived using the 

finite-element method. Computational codes had been developed in order to perform dynamics 

simulations of the system. Experimental and calculated results on time history responses, natural 

frequencies and vibration modes show the validities of the formulation, computational codes and 

modeling of the system. Two proportional-derivative controllers were designed to suppress the 

vibration of the system. The calculated results have been revealed that the vibration of the system 

can be suppressed effectively even though using only one piezoelectric actuator. 
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