

Fwd: Paper editing

1 pesan

Prof. Dr Farid Nasir Ani C23-325(JTB) <farid@mail.fkm.utm.my> Kepada: NUR HAMZAH <hamzah_said@poliupg.ac.id> 21 November 2022 10.02

Prof Ir Dr Farid Nasir Ani, MIEM, PEng, FSOE(UK), FIPlantE(UK), MIMarEST(UK), CEng. MASHRAE.

------ Forwarded message ------From: **Prof. Dr Farid Nasir Ani C23-325(JTB)** <farid@mail.fkm.utm.my> Date: Wed, Feb 7, 2018 at 11:00 AM Subject: Paper editing To: nur hamzah <hamzah_said@yahoo.com>

Salam Pak Hamzah

Sila buat editing, kemudian hantar dan cc kpd saya. Tk

Dear Prof. Ani F.N,

We have conducted line editing to your paper as part of the publication process in IJTech. Enclosed, please find the comments from the line editor indicated by a character in color besides black. We would like to ask you to complete the following:

Please make necessary revise for the paper according to the line editor comments.

Please complete detail information for: name of author(s), and affiliation of each author(s). Please refer to Guideline for Author to write the affiliation section.

After the revision complete, please send it back to ijtech@eng.ui.ac.id or by reply this email, no later than January 9, 2018. We will proceed to the next step (Layouting, Final proof & Copyright) of the revised paper before printing.

We are looking forward to receiving your revised paper soon.

2 lampiran

R2-ME-1386-20180201151119_OPTIMIZATION OF BIODIESEL PRODUCTION_clean version.docx 247K

R2-ME-1386-20180201151119_OPTIMIZATION OF BIODIESEL PRODUCTION_track changes version.docx 258K

Paper

From: Prof. Dr Farid Nasir Ani C23-325(JTB) (farid@mail.fkm.utm.my)

- To: hamzah_said@yahoo.com
- Date: Monday, January 29, 2018 at 05:28 PM GMT+8

Prof Ir Dr Farid Nasir Ani, MIEM, PEng, FSOE(UK), FIPlantE(UK), MIMarEST(UK), CEng. MASHRAE.

ijtech_optimization of biodiesel 29 jan 18.doc 329kB

[IJTech-ME-1386] Acknowledgement of Receiving Final Proof & Copyright of The Paper

From: IJTech (ijtech@eng.ui.ac.id)

- To: farid@mail.fkm.utm.my
- Cc: mfarid@fkm.utm.my; hamzah_said@yahoo.com
- Date: Wednesday, April 25, 2018 at 09:43 AM GMT+8

Dear Prof. Ani F.N.,

We confirmed that the editorial board has received your final proof and copyright of the paper. We appreciate your effort to refine your paper to meet the quality of IJTech publication standard.

We will notify you when your paper has been published online. Thank you for your contribution to IJTech and looking forward to a good collaboration in the next future.

With kind regards,

Nyoman Suwartha Managing Editor International Journal of Technology (IJTech) ISSN : 2086-9614 <u>http://www.ijtech.eng.ui.ac.id</u>

INTERNATIONAL JOURNAL OF TECHNOLOGY ISSN: 2086-9614

Copyright and Authorship Form

MANUSCRIPT SUBMISSION APPROVAL AND COPYRIGHT TRANSFER

(Type or print the following information)

Title	:	OPTIMIZATION OF BIODIESEL PRODUCTION USING PACKED BED REACTOR
Author(s)	:	N.H. Said, F.N. Ani, M.F.M. Said

Transfer of Copyright

In the event that this article is accepted for publication in the International Journal of Technology (IJTech), the Author(s) hereby transfers to IJTech all copyrights and certifies that he/she is authorized to do so.

The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Author certifies that the manuscript has been read and approved for submission.

Statement of Authorship

The undersigned authors hereby confirm that the manuscript and this submission form identifies all co-authors who have substantially contributed to the concept, data collection and analysis or preparation of the manuscripts and therefore who may have intellectual property claims to the content. All authors have read and approved the manuscript and are prepared to take public responsibility for the work. In addition, all authors have declared all sources of funding for the work reported in their manuscript and reported all potential conflict of interest. The authors attest that those individuals or organizations mentioned in the Acknowledgements are aware that their names appear in the manuscript.

I certify that I have the authority to sign for those authors whose name(s) do not appear on this form:

Senior Author signature and date:		12.4.2018
Type or print name:	F.N. Ani	KETUA PROJEK / PROFESSOR
		UNIVERSITI TEKNOLOGI MALAYSIA 81310 UTM SKUDAI, JOHOR D.T

NUR HAMZAH <hamzah_said@poliupg.ac.id>

12 April 2018 pukul 12.15

Copyright and Authorship

1 pesan

Ir. Nur Hamzah, M.T. D4 Teknik Pembangkit Energi <hamzah_said@poliupg.ac.id> Kepada: ijtech@eng.ui.ac.id

Bcc: "Dr Farid Nasir Ani C23-325(JTB)" <farid@mail.fkm.utm.my>

Dear

Mr. Nyoman Suwartha

I attached copyright and authorship form upon request by email on April 11, 2018.

Thank you for your attention and cooperation.

Regards,

Nur Hamzah Said

Alternative email: hamzah_said@yahoo.com

2 lampiran

Copyright 2 IJTech.pdf

Copyright 1 IJTech.pdf

International Journal of Technology (0000) V: PPP-PPP ISSN 2086-9614

© IJTech 0000

OPTIMIZATION OF BIODIESEL PRODUCTION USING A STIRRED PACKED-BED REACTOR

Nur Hamzah Said^{1,3}, Farid Nasir Ani¹, Mohd. Farid Muhamad Said^{2*}

¹Department of Thermofluid, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia ²Automotive Development Centre, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia ³Department of Mechanical Engineering, State Polytoshia of Using Pandang, Mekassar 00245

³Department of Mechanical Engineering, State Polytechnic of Ujung Pandang, Makassar 90245, Indonesia

(Received: Month Year / Revised: Month Year / Accepted: Month Year)

ABSTRACT

The use of waste cooking oil (WCO) as feedstock and in microwave heating technology are favorhelps to reduce the cost of biodiesel. In this study, a continuous flow transesterification of waste cooking oil (WCO) by microwave irradiation for biodiesel production using calcium oxide (CaO) as a hetrogeneous catalyst, calcined from of cockle shells, has been used. The catalyst was packed inside a plastic perforated container that mounted on a stirrer shaft and inserted inside the reactor. The thermocouple inside of the reactor wais connected to a temperature controller and microwave power input to maintain the temperature. Response surface methodology (RSM) was employed to study the relationships of between power input stirrer speed and liquid hourly space velocity (LHSV) on the WCO methyl ester (WCOME) conversion at fix thea fixed molar ratio of methanol to oil of 9 and a reaction temperature wa set at 65°C. The experiments were designed developed using the Box-Behnken design (BBD) for optimum conditions. The transesterification of the WCO was produced at 72.5% maximum WCOME conversion at the an optimum power input of 445 W, stirrer speed of 380 rpm and LHSV of 71.5 h⁻¹. The energy consumption at-in a steady state condition wais 0.594 kWh fo the production ofing 1 litre WCOME, for this hetrogeneous catalyst is much faster compar withthan conventional heating .

Keywords: Box-Behnken design; Calcium oxide; Microwave; Optimization; Waste cooking oil

1. INTRODUCTION

Biodiesel belongs to the category of alternative diesel fuels and can be produced from animal fats and vegetable oils, which are generally referred to as renewable biological sources. Research activities on the production of biodiesel have been on the increase in recent times due largely to the surge in the price of petroleum products and the environmental benight friendliness of the biodiesel. The uUse of biodiesel blends has ve led to the a reduction in the levels of greenhouse gases such as CO₂ (Balat & Balat, 2010). A major impediment to the full commercialization of biodiesel is the high cost of production. Thus, one way of reducing this cost of production is through the use of inexpensive raw materials such as WCO (Hamze et al., 2015). From the environmental point of view, the use of WCO reduces decreases the disposal problem.

* Corresponding author's email: mfarid@mail.fkm.utm.my, Tel. +6-07-5535449, Fax. +6-07-5566159

Formatted: Highlight

Commented [R1]: See below

Commented [R2]: "so"? Formatted: Highlight

Permalink/DOI:https://doi.org/10.14716/ijtech.vxix.xxxx

The environmental problem caused by <u>the disposal of WCO through direct discharge into the</u> water drainage <u>systems hasve</u> led <u>the policy-makers in many developed countries set to develop</u> policies that stipulate stiffer penaltiesy for the violators (Kathirvel et al., 2016). So that With this in mind, the use of WCO as feedstock can create a safe and clean environment (Kusrini et al., 2015).

Hence, the researchers have been focusing on using WCO as a feed-stock for diesel fuel (Chen et al., 2012: Kannan et al., 2011: Liu et al., 2010: Muralidharan & Vasudevan, 2011: Patil et al., 2010). The conversion of fats and oils into biodiesel hasve been carried out by researchers who employinged various methods, such as pyrolysis, catalytic cracking and transesterification (Rathore et al., 2016). However, Anmong these methods, transesterification is noted for the production of high quality biodiesel (Talebian-Kiakalaieh et al., 2013). Transesterification, also known as alcoholysis, involves the formation of glycerol and esters through the reaction of alcohol with either oil or fat. The reaction type and temperature, type of alcohol, agitation speed, concentration of catalyst, water content, alcohol to oil molar ratio, and FFA of the feedstock are the core process factors that usually influence the transesterification process (Hamze et al., 2015). Compared with conventional heating, the applications of microwave irradiation in biodiesel production have led to a considerable reduction in the reaction time and an increase in the biodiesel yield (Motasemi & Ani, 2012). Besides that, enhancement in the rate of reaction and the yield can also be facilitated through the use of a catalyst. Unlike conventional heating, this method can operate at over 90% efficiency and is eco-friendly in a variety of chemical reactions (Lam et al., 2016).

In addition, the catalyst plays a very decisive role in the process of transesterification. Catalysts are classified as either homogeneous or heterogeneous_x based on the type of chemicals that are present in the transesterification reaction. Catalysts are said to be homogeneous when they eatalysts act in the a liquid phase which is the same as the reaction mixture. On the other hand, heterogeneous catalysts are eatalysts that act in a phase that is different from the reaction mixture, commonly as a solid (Borges & Díaz, 2012). Heterogeneous catalysts areis a green process, are eco-friendly and non-corrosive. Heterogeneous catalysts They have good recyclability, and as such can be used as many times as possible, thus offering a cost-effective way for the production of biodiesel (Said et al., 2015). The aApplication of calcium oxide (CaO) derived from waste carbonaceous materials is a potential solid catalyst in the biodiesel production process (Yusuff et al., 2018).

The use of conventional transesterification in batch operations <u>was has been</u> considered rigorous, tedious, slow₇ and unsuitable for automation adaptation. Besides that, it has a low cost of production, <u>the</u> ability to <u>only</u> produce trifling very small quantities of biodiesel, <u>the</u> capacity to make improvements to the design of equipment for the optimization of the quality of biodiesel, and the ability to produce greater quantities of biodiesel per unit of labour are some of the advantages of the continuous flow transesterification (Chen et al., 2010).

During <u>the</u>_transesterification process, the reactants, <u>triglycerides?</u> (oil) such as WCO and methanol, are considered immiscible due to their inability <u>to</u> properly mix together and form a mixture with a single layer. The liquid-solid mass transfer resistance between<u>the</u> solid catalyst and reactants can be reduced by increasing the mass transfer and micromixing efficiencies using a <u>stirring</u> packed-bed reactor (Chen et al., 2010; Li et al., 2013).

Several continuous flow reactors using heterogeneous catalysts to produce biodiesel from WCO (Borges & Díaz, 2013; Buasri et al., 2012). Application of RPB in the conventional heating has been widely used, particularly the use of the WCO as a raw material. It is clear that residence time is relatively <u>larger_long_compared</u> to microwave heating. Although using microwave

Commented [R3]: just "many times"?
Formatted: Highlight

Commented [R4]: this is surely a good thing

Formatted: Highlight

	types of transesterification, but you need to make clearer which of the advantages/disadvantages apply to each type in the second sentence.
١	Formatted: Highlight
١	Formatted: Highlight
1	Commented [R6]: "stirred"? (see main title)
1	Formatted: Highlight
-	Commented [R7]: sentence incomplete
J	

Formatted: Highlight

irradiation can produce biodiesel with <u>a</u> low residence time, <u>but</u> conversion <u>could be</u> obtained from this system is still low.

<u>RThe</u> response surface modelling (RSM) has been applied widely <u>for-in</u> the development and optimization of various synthesis processes and for the optimization of analytical chemistry processes. <u>RSM-It</u> is a powerful statistical and mathematical tool with several advantages (Pinzi et al., 2010). Dwivedi and Sharma (2015) <u>in their study</u>-carried out optimization of the <u>four</u> process factors through the implementation of Box-Behnken RSM in order to obtain maximum biodiesel yield from Pongamia oil.

The objective of this paper is to report <u>one</u> continuous flow transesterification <u>of</u> WCO using microwave irradiation for biodiesel production, <u>where in which</u> the solid catalyst was placed in a catalyst container stirrer. It is interesting to optimize conversion of three process variables, namely power input, stirrer speed and LHSV, for the transesterification process of WCO using RSM_-based BBD in 15 experimental runs, with the help of Design Expert version 7.0 software.

2. MATERIALS AND METHODS

2.1. Materials

Methanol analytical reagent (AR) Grade was purchased from QRëC, <u>Republic of New Zealanc</u>. The WCO obtained from the restaurants containing FFA (0.41-0.48%) usually contains food waste in the form of solids. Therefore, <u>filteringit</u> is necessary <u>for filtering</u>. Besides, water content <u>contained</u> in the WCO needs to be removed by evaporation. Evaporation of <u>any</u> water can be done by heating the <u>oil</u> in an electric oven at 110°C for 4 h. After that, the WCO is ready for the transesterification process.

The catalyst was CaO, it was made from the cockle shells. They were crushed using a hammer and sieved with to a size of 2 mm to 4 mm. FurthermoreSubsequently, cockle-the shells were decomposed in the a furnace at a temperature of 900-°C for 3.5 h by the method performed by Nair et al.; (2012). After the cold solids were obtained, they were stored in a desiccator before use in the transesterification process. Characterization was performed using X-ray diffraction (XRD) to see observe the structure of the metal oxide formed. The characterization results obtained were compared with data-JCPDS data, which are theis standards for XRD diffraction pattern data and decomposition of cockle shells.

2.2. Transesterification process of waste cooking oil

2.2.1. Experimental set_-up

The experiment <u>was</u> carried out using <u>a</u> 1 kW domestic modified microwave system having with a frequency of 2450 MHz-frequency. The microwave power can be selected at the different levels from 100 to 1000 W and for various exposure times (1–90 min). <u>A r</u>Reactor made of borosilicate with a diameter of 50 mm and a length of 210 mm wais placed in the microwave.

The catalyst was packed inside a perforated plastic container mounted on a stirrer shaft and inserted inside the reactor. Three holes were drilled <u>in</u> the top reactor cover of the domestic microwave oven <u>in order to</u> place the reactor inside <u>it</u>. Two K-type metallic thermocouples were used to measure the temperature of <u>the</u> methandl mixture and the WCO; one was inserted from the bottom of the reactor (T1) and one at the top of the reactor (T2). The thermocouples were connected to a Pico data acquisition system, which in turn was connected to a personal computer for continuous recording of <u>the</u> data using Picolog <u>software</u>. The thermocouple (T1) was also connected to a temperature controller and microwave power input to maintain the temperature.

613

Formatted: Highlight
Commented [R8]: do you need to state what the four factors

Commented [R9]: Doesn't look quite right Formatted: Highlight

-	Formatted: Highlight
-	Formatted: Highlight
4	Formatted: Highlight
	Commented [R10]: Not clear if the WCO was inserted or the two thermocouples.
	Commented [R11]: I've changed it so that it's clear that you are referring to the insertion of the thermocouples, not the oil, OK?

The microwave and thermocouple should were be grounded to avoid any discrepancy in temperatures readings or sparks.

The rotation of the packed bed was <u>done made</u> using an overhead high-speed stirrer (WiseStir model HS-30D) equipped with a digital speed regulator. Stirrer speeds of 200, 300 and 400 rpm w<u>ereas</u> used in this research. The rotation of the packed bed helped to increase the contact between the catalyst and the reactants. The experimental set_-up for single step transesterification continue<u>ds</u> the process with <u>the</u> catalyst container stirrer, as shown in Fig 1. The flowrate of WCO <u>wais</u> regulated using a peristaltic pump, <u>whose</u> speed can be varied which <u>ins</u> directly proportional to the flow rate. The molar ratio of alcohol to oil and reaction temperature <u>in this study</u> were fixed at 9:1 (Aworanti et al., 2013; Buasri et al., 2013) and 65-°C (Buasri et al., 2013), respectively. The weight of <u>the</u> catalyst <u>was</u> varied <u>between</u> 10.00, 12.73 and 20.00 g. <u>The fF</u>low rate of WCO <u>wais</u> regulated by setting the speed of <u>the</u> peristaltic pump from <u>at</u> 24, 28 and 32 rpm_s- <u>w</u>While the alcohol <u>was</u> put into the reactor using a syringe.

Figure 1 EThe experimental set-up for <u>continuous</u>? transesterification continues process with stirring packed-bed

2.2.2 Experimental procedure

Weigh-The catalyst was weighed and inserted eatalyst into the container. Fix aA container was fixed onto the stirrer shaft and inserted-it into the glass reactor. Pour-Mmethanol was then poured into the glass reactor and - Attach thea moveable cover attached for to the top of a reactor. Set The stirrer speed was set and the temperature controlled. Make Tthe process of dispersing of the methanol and catalyst was made at 65-°C for 20 min. Then stream The the WCO was then streamed through the bypass valve until the reactor wais full. -Close-Tthe bypass valve was closed and turn on the peristaltic pump turned on. Sampling was done made after the process time reacheds the space-time. The sample was collected in 10 mL glass vials and centrifuged at 4000 rpm for 10 min. The product mixture was then exposed to open air for 30 min. to evaporate the excess methanol (Aworanti et al., 2013). ThenSubsequently, they were analyzed the chemical and physical properties were analyzed.

2.3. Conversion of FFA

The effect of different parameters on the FFA conversion of WCO methyl ester (WCOME) that are investigated are catalyst weight, flowrate, stirrer speed and power input, with the molar ratio and reaction temperature kept constant. The reaction products were analyzed by gas chromatography (GC) using the? Perkin Elmer Auto system GS FID equipped with a flame-

Commented [R12]: seeabove
Formatted: Highlight
Formatted: Highlight

Formatted: Highlight

ionization detector (FID) through the capillary GC column BP5, 30 m in length, 0.25 mm ID and 0.25 micrometers. Comparison with authentic samples wasere carried out in order to identify the reactants and the products. The palmitic acid (hexadecanoic acid methyl ester) conversion is given by the following equation (Han et al., 2016):-

Conversion (%) =
$$100\% \times (1 - (a_1 / a_2))$$
 (1)

where a_1 and a_2 represents the initial and final <u>stages</u>? of the reaction mixture, respectively.

2.4. Space-time and space-velocity

According to Levenspiel (1999), for batch reactors the natural performance measure is the reaction time, while for flow reactors the proper performance measures are the space_-velocity and the space_-time. For a negligible change in volume, the residence time and the space-time (τ) in the batch reactor and ideal tubular reactor, respectively, are considered the same and is are given by:

 $\tau = \text{reactor volume/volumetric feedrate}$ (2)

The space velocity, which is the inverse of the space time, is given by: $Space \ velocity = 1/\tau$ (3)

<u>The l</u>-iquid hourly space velocity (LHSV) in h^{-1} is a measure of the feed rate and is calculated using Eq. (4) (Ancheyta, 2011).

LHSV = total volumetric flowrate/total catalyst volume (4)

$$LHSV = 60F / V_{c}$$
⁽⁵⁾

where F is flowrate in ml min⁻¹ and V_c is <u>the</u> catalyst volume (ml), so <u>that</u> Eq. (5) can be expressed in <u>equation as the</u> <u>following equation</u>: $LHSV = 60F \times \rho_c / W_c$ (6)

where Wc is the catalyst weight (g) and ρ_c is the catalyst density (g ml⁻¹).

3. RESULTS AND DISCUSSION

3.1. Biodiesel production

<u>The rResults of the biodiesel transesterification process of WCO using the packed bed stirrer</u> <u>depict are shown in Table 1.</u> The kinematic viscosity of WCOME is lower than <u>that of? WCO</u>. One major specification <u>that</u> a manufacturer of biodiesel needs to comply with is the kinematic viscosity. <u>It-This</u> indicates the amount of fatty acid methyl esters (FAME) contained in the biodiesel, thus signifying the degree of the reaction.

Table 1 Selected properties of WCO and WCOME					
Properties	Units	WCO	WCOME		
Calorific value	kJ kg ⁻¹	43,522	38,049		
Density at 15 °C	kg l ⁻¹	0.917	0.870		

Formatted: Highlight

Formatted: Font: Not Italic

Formatted: Highlight

	U .	010.0	136.5
Kinematic Viscosity at 40 °C c	St 4	7.51	5.48

The results of the test using GCMS showed that one sample contain<u>sing</u> 97.91% methyl ester. Using a molar ratio of methanol to oil of 9:1, a temperature of 65-°C, power input of 450 W, a stirrer speed_of 400 rpm and LHSV_of 57.31 h⁻¹. One of the biggest components is hexadecanoic acid methyl ester, which is then to be used in the <u>calibration</u> calculation—of <u>calibration</u>.

3.2. Experimental design results

The experimental response and predicted response for <u>the</u> transesterification of WCOME at a time collected to space time ratio of =|1| are shown in Table 2. The predicted values of the output parameter are calculated using the <u>following</u> regression equation given as follows:

$$C = 69.8236637 + 0.00341229 \text{ A} + 0.0155426 \text{ B} - 0.95253203 \text{ C}$$

$$-1.644414 \times 10^{-5} AB + 0.000126601 \times AC + 9.4621 \times 10^{-5} BC$$
$$-9.4299 \times 10^{-7} (A^{2}) - 2.08229 \times 10^{-5} (B^{2}) - 0.000307651 \times (C)^{2}$$

Table 2 Responses for transesterification of WCOME

Run	A:Power	B:Stirrer	C:LHSV	Conversio	on (%)
	<u>i</u> lnput	speed	(h-1)	Experimental	Predicted
	(watt <u>s</u>)	(rpm)	~ /	<u>r</u> Response	rResponse
1	450	400	57.17	72.48	72.51
2	315	300	57.17	72.09	71.93
3	450	300	83.18	72.18	72.34
4	315	400	31.19	72.11	72.11
5	315	400	83.18	71.77	71.59
6	315	200	31.19	71.75	71.94
7	450	200	57.17	72.46	72.29
8	180	300	83.18	70.05	70.07
9	315	300	57.17	71.96	71.93
10	180	200	57.17	70.49	70.47
11	450	300	31.19	72.48	72.46
12	315	300	57.17	71.75	71.93
13	180	300	31.19	72.13	71.97
14	315	200	83.18	70.43	70.44
15	180	400	57.17	71.40	71.57

Commented [R13]: This sentence is incomplete. Should it be joined to the one before it?

Formatted: Highlight

Formatted: Highlight
Commented [R14]: OK?

(8)

The significance of each coefficient in Eq. (8) was evaluated by the P-value, as shown in Table 3. The smaller the magnitude of the P-this value, the more significant is the corresponding coefficient. Considering the linear effect, only two operating parameters were found to be significant terms in increasing the conversion in the final product. The power input term had the most significant linear effect, followed by LHSV and stirrer speed, respectively. In terms of the quadratic effect, no parameter was significant at the 5% levels. However, for the interaction effect, it was found that only power input-LHSV interaction was significant at 5% this level. The other interaction terms had no significant effect on the WCOME conversion.

Table 2 shows that the value of the Model F-value of 19.23 means that the model is significan Under this condition the "Prob> F" value of less than 0.0500 indicates a significant model term three of which are the main parameters of power input, stirrer speed and LHSV. The interaction effect of power input--LHSV is also significant. If there are many insignificant model terms (not including those needed to support the hierarchy), model reductions can improve your-th model. The "Lack-of-fFit vValue" of 2.11 implies that Lack of fFit is insignificant compared to pure error. There is a possibility of 33.70% that this "ILack-of-fFit F-value" could be due to noise. The absence of an insignificant fit is good enough. The results inof Table 3 also show that this model is acceptable, because the modelit is significant and lack of fit are is not significant. In addition, to the power input parameters, stirrer speed, LHSV, and (power input k LHSV) are also significant.

Table 3 ANOVA for response surface quadratic model analysis of variance table

Source	Sum of	d f	Mean	F	p-value	
	Squares	1	Square	Value	Prob > F	
Model	8.262845	9	0.918094	19.22902983	0.0023	significant
A-Power Input	3.830211	1	3.830211	80.22190583	0.0003	
B-Stirrer Speed	0.861057	1	0.861057	18.03442567	0.0081	
C-LHSV	2.045512	1	2.045512	42.84225667	0.0012	
AB	0.197064	1	0.197064	4.127410066	0.0979	
AC	0.789524	1	0.789524	16.53619519	0.0097	
BC	0.242002	1	0.242002	5.068608073	0.0742	
A^2	0.001091	1	0.001091	0.022841231	0.8858	
B^2	0.160096	1	0.160096	3.353141191	0.1266	
C^2	0.159572	1	0.159572	3.342154705	0.1271	
Residual	0.238726	5	0.047745	2.114964134	0.3370	
						not
Lack of Fit	0.181511	3	0.060504			significant
Pure Error	0.057215	2	0.028607			
Cor Total	8.501571	14				

The R² value for WCOME conversion is 0.9719. It-This means that 97.19% of the variability in the data accounted to model, thereby, validating the reliability of the model developed for establishing a correlation between the process variables and the WCOME conversion.

3.2.1. Interactive effects of the variables on WCOME conversion

Commented [R15]: "significant model terms"? Formatted: Highlight

Commented [R16]: needed? Formatted: Highlight

Commented [R17]: are accounted for by the model ...? Formatted: Highlight

617

The interaction of power input and stirrer speed at an LHSV of 71.5 h⁻¹ on WCOME conversion is exhibited-displayed in Figure- 2. It is showns that for low power input, WCOME conversion increasesing with increasing stirrer speed. At the high power input, WCOME conversion increases with stirrer speed until the a certain point, and then decreases. MThe minimum WCOME occurs at minimum power input and minimum stirrer speed. This is due to the fact that lower both lower agitation and power transmission from microwave to mixture decrease the conversion. The yield value clearly of yield-increased-clearly when the speed was increased, because of the increase in the micro-mixing intensity between the oil and methanol phases (Chen et al., 2010).

3.2.2 Optimization of response parameters

The objective of optimization is to find the best setting value conditions based on the power input, stirrer speed and LHSV that <u>convert_produce</u> the highest conversion value. <u>OThe</u> optimum conversion is obtained by setting the lower and upper limits of <u>the</u> variable process, namely power

Figure 2 WCOME conversion versus power input and stirrer speed at LHSV=71.5 h⁻¹

input, stirrer speed and LHSV. The percentage of conversion was set to maximum. Based on the model it<u>It is</u> implieds that the model is significant and the lack_-of_-fit F-value which is notin-significant, hence indicatinges that the model can be used to predict the conversion.

The response was optimized to maximize the WCOME conversion conditions for collected time same, as space time was based on the mathematical equation that was developed. The optimum value of the WCOME conversion of 72.52% was achieved with a power input of 445 W, stirrer speed of 380 rpm and LHSV of 71.5 h⁻¹. The experiment was then validated at in optimization conditions of power input of 450 W, stirrer speed of 380 rpm and LHSV of 71.5 h⁻¹. The result of WCOME conversion at this conditionat these levels wais 72.-5%.

Some continuous flow biodiesel production research using heterogeneous catalysts are is shown in Table 4_{z} . It show that in which the residence time of MW heating is relatively shorter as compared to than when using conventional heating. Microwave irradiation can produce biodiesel with a shorter residence time, depending on the design requirements for fuel consumption in diesel engine power generation.

Table 4. Continuous flow biodiesel production of WCO using heterogeneous catalyst and its condition and performance.

Commented [R18]: optimal/optimized?

Formatted: Highlight

619

In an earlier study, for the a microwave biodiesel production system using a homogeneous catalyst which is equipped with a mechanical stirrer, the energy for electrical consumption was 0.468 kWh kg⁻¹ of biodiesel (Motasemi & Ani, 2012). Later, a similar study, was done conducted using a microwave reactor for the continuous production of palm oil biodiesel by Choedkiatsakul et al. (2015). The energy consumption for this process include the premixing tank, peristaltic pump, microwave system and cooling system were measured by a plug-in power meter which required 0.1167 kWh l⁻¹ of biodiesel. In this study, the energy consumption for the optimal steady state condition is 0.594 kWh for the production ofing 1 litre of biodiesel using a heterogeneous catalyst.

4. CONCLUSION

The application <u>of</u> the continuous flow transesterification of WCO using microwave technology with a perforated plastic container for <u>the</u> solid catalyst on <u>the</u> stirrer could be used to convert WCO to biodiesel. The effects of variables such as power input, stirrer speed and LHSV on the heterogeneous transesterification reaction are very significant. The results obtained clearly show<u>ed</u> that the RSM_based BBD is a valuable tool that can be used to establish the relationships <u>among-between</u> the process factors and the responses, with a minimum number of experiments, in a very efficient way. Furthermore, the RSM_based BBD can be used to determine the recommended optimum conditions for the production of <u>the</u> biodiesel.

5. ACKNOWLEDGEMENT

The authors are grateful to the Ministry of Higher Education (MOHE) Malaysia and Research University Grant, Universiti Teknologi Malaysia, Vot 4L653 for the<u>ir</u> financial support, and the Research Management Centre, UTM for the management support. The first author would like to thank the Governor of South Sulawesi, Indonesia <u>on-for</u> the scholarship obtained to continue his education at the Universiti Teknologi Malaysia.

6. REFERENCES

Ancheyta, J. 2011. *Modeling and Simulation of Catalytic Reactors for Petroleum Refining*. New Jersey: John Wiley & Sons

- Aworanti, O. A., Agarry, S. E. and Ajani, A. O., 2013. Statistical Optimization of Process Variables for Biodiesel Production from Waste Cooking Oil Using Heterogeneous Base Catalyst. *British Biotechnology Journal*, Volume 3(2), pp. 116-132
- Balat, M. and Balat, H., 2010. Progress in Biodiesel Processing. Applied Energy, Volume 87(6), pp. 1815-1835
- Borges, M. E. and Díaz, L., 2012. Recent Developments on Heterogeneous Catalysts for Biodiesel Production by Oil Esterification and Transesterification Reactions: A Review. *Renewable and Sustainable Energy Reviews*, Volume 16(5), pp. 2839-2849
- Borges, M. E. and Díaz, L., 2013. Catalytic Packed-Bed Reactor Configuration for Biodiesel Production Using Waste Oil as Feedstock. *BioEnergy Research*, Volume 6(1), pp. 222-228
- Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. and Trongyong, S., 2013. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. *The Scientific World Journal*, Volume 2013, pp. 1-7
- Buasri, A., Ksapabutr, B., Panapoy, M. and Chaiyut, N., 2012. Biodiesel Production from Waste Cooking Palm Oil Using Calcium Oxide Supported on Activated Carbon as Catalyst in a Fixed Bed Reactor. *Korean Journal of Chemical Engineering*, Volume 29(12), pp. 1708-1712
- Chen, Y.-H., Huang, Y.-H., Lin, R.-H. and Shang, N.-C., 2010. A Continuous-Flow Biodiesel Production Process Using a Rotating Packed Bed. *Bioresource Technology*, Volume 101(2), pp. 668-673
- Dwivedi, G. and Sharma, M. P., 2015. Application of Box–Behnken Design in Optimization of Biodiesel Yield from Pongamia Oil and Its Stability Analysis. *Fuel*, Volume 145(0), pp. 256-262
- Hamze, H., Akia, M. and Yazdani, F., 2015. Optimization of Biodiesel Production from the Waste Cooking Oil Using Response Surface Methodology. *Process Safety and Environmental Protection*, Volume 94(0), pp. 1-10
- Han, X.-X., Chen, K.-K., Yan, W., Hung, C.-T., Liu, L.-L., Wu, P.-H., et al., 2016. Amino Acid-Functionalized Heteropolyacids as Efficient and Recyclable Catalysts for Esterification of Palmitic Acid to Biodiesel. Fuel, Volume 165, pp. 115-122
- Kusrini, E., Harjanto, S. and Yuwono, A. H., 2015. Applications of a Green Chemistry Design, a Clean Environment, and Bioenergy to Promote the Sustainability and Added Value of Products. *International Journal of Technology*, Volume 6(7), pp. 1065-1068
- Lam, S. S., Liew, R. K., Jusoh, A., Chong, C. T., Ani, F. N. and Chase, H. A., 2016. Progress in Waste Oil to Sustainable Energy, with Emphasis on Pyrolysis Techniques. *Renewable and Sustainable Energy Reviews*, Volume 53, pp. 741-753
- Levenspiel, O. 1999. Chemical Reaction Engineering. New York: John Wiley & Sons, Inc.
- Li, Z.-H., Lin, P.-H., Wu, J. C. S., Huang, Y.-T., Lin, K.-S. and Wu, K. C. W., 2013. A Stirring Packed-Bed Reactor to Enhance the Esterification–Transesterification in Biodiesel Production by Lowering Mass-Transfer Resistance. *Chemical Engineering Journal*, Volume 234(0), pp. 9-15
- Motasemi, F. and Ani, F. N., 2012. A Review on Microwave-Assisted Production of Biodiesel. Renewable and Sustainable Energy Reviews, Volume 16(7), pp. 4719-4733
- Nair, P., Singh, B., Upadhyay, S. N. and Sharma, Y. C., 2012. Synthesis of Biodiesel from Low Ffa Waste Frying Oil Using Calcium Oxide Derived from Mereterix Mereterix as a Heterogeneous Catalyst. *Journal of Cleaner Production*, Volume 29–30(0), pp. 82-90
- Pinzi, S., Lopez-Gimenez, F. J., Ruiz, J. J. and Dorado, M. P., 2010. Response Surface Modeling to Predict Biodiesel Yield in a Multi-Feedstock Biodiesel Production Plant. *Bioresource Technology*, Volume 101(24), pp. 9587-9593

- Rathore, V., Newalkar, B. L. and Badoni, R. P., 2016. Processing of Vegetable Oil for Biofuel Production through Conventional and Non-Conventional Routes. *Energy for Sustainable Development*, Volume 31, pp. 24-49
- Said, N. H., Ani, F. N. and Said, M. F. M., 2015. Review of the Production of Biodiesel from Waste Cooking Oil Using Solid Catalysts. *Journal of Mechanical Engineering and Sciences*, Volume 8, pp. 1302-1311
- Talebian-Kiakalaieh, A., Amin, N. A. S. and Mazaheri, H., 2013. A Review on Novel Processes of Biodiesel Production from Waste Cooking Oil. *Applied Energy*, Volume 104(0), pp. 683-710
- Yusuff, A. S., Adeniyi, O. D., Olutoye, M. A. and Akpan, U. G., 2018. Development and Characterization of a Composite Anthill-Chicken Eggshell Catalyst for Biodiesel Production from Waste Frying Oil. *International Journal of Technology*, Volume 9(1), pp. 110-119.