ASSOCIATE EDITOR

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Bansal</td>
<td>Satya International (Energy Consultants), USA</td>
</tr>
<tr>
<td>A Kovacevic</td>
<td>City University, UK</td>
</tr>
<tr>
<td>K T Ooi</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>R L Reuben</td>
<td>Heriot-Watt University, UK</td>
</tr>
<tr>
<td>J Tuma</td>
<td>Technical University of Ostrava, Czech Republic</td>
</tr>
</tbody>
</table>

EDITORIAL BOARD

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M J Adams</td>
<td>University of Birmingham, UK</td>
</tr>
<tr>
<td>M S A Bradley</td>
<td>University of Greenwich, UK</td>
</tr>
<tr>
<td>A de Ryck</td>
<td>Rapsodee Centre, École des Mines d'Albi-Carmaux, France</td>
</tr>
<tr>
<td>D Gethin</td>
<td>University of Wales, Swansea, UK</td>
</tr>
<tr>
<td>E Harkin-Jones</td>
<td>Queen's University Belfast, UK</td>
</tr>
<tr>
<td>M Jackson</td>
<td>Loughborough University, UK</td>
</tr>
<tr>
<td>S Jain</td>
<td>Indian Institute of Technology, Delhi, India</td>
</tr>
<tr>
<td>Z Lin</td>
<td>Shanghai Jiaotong University, China</td>
</tr>
<tr>
<td>H Mahgerefteh</td>
<td>University College London, UK</td>
</tr>
<tr>
<td>S A Meguid</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>M A Mehraban</td>
<td>Mechanical Engineering University of Kermal, Iran</td>
</tr>
<tr>
<td>G Mullineux</td>
<td>University of Bath, UK</td>
</tr>
<tr>
<td>D B Murray</td>
<td>University of Dublin, Trinity College, Ireland</td>
</tr>
<tr>
<td>K C Ng</td>
<td>National University of Singapore, Singapore</td>
</tr>
<tr>
<td>B Pillai</td>
<td>Real Time Inc, USA</td>
</tr>
<tr>
<td>G L Quarini</td>
<td>Bristol University, UK</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Country</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>P Richardson</td>
<td>Campden & Chorleywood Food Research Association, UK</td>
</tr>
<tr>
<td>S A Tassou</td>
<td>Brunel University, UK</td>
</tr>
<tr>
<td>M Wang</td>
<td>University of Hull, UK</td>
</tr>
<tr>
<td>P Wild</td>
<td>University of Victoria, Canada</td>
</tr>
<tr>
<td>F Zhao</td>
<td>Tsinghua University, China</td>
</tr>
</tbody>
</table>
Original articles

Potential for improving efficiency of the internal cylindrical grinding process by modification of the grinding wheel structure—Part I: Grinding wheels made of conventional abrasive grains
Krzysztof Nadolny, Witold Habrat
First Published March 16, 2016; pp. 621–632

Variable thickness scroll compressor performance analysis—Part I: Geometric and thermodynamic modeling
Peng Bin, Vincent Lemort, Arnaud Legros, Zhang Hongsheng, Gong Haifeng
First Published April 11, 2016; pp. 633–640

Variable thickness scroll compressor performance analysis—Part II: Dynamic modeling and model validation
Peng Bin, Vincent Lemort, Arnaud Legros, Zhang Hongsheng, Gong Haifeng
First Published April 5, 2016; pp. 641–649

Comparison of the efficiency of the high speed low torque hydrostatic drives using bent axis motor: An experimental study
Md. Ehtesham Hasan, K Dasgupta, Sanjoy Ghoshal
First Published December 11, 2015; pp. 650–666

Electro-polishing of tungsten carbide ball nose end mill to improve tool life
Ramesh Kuppuswamy, Kapui Mubita
First Published December 16, 2015; pp. 667–675

Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools
Rusdi Nur, MY Noordin, S Izman, D Kurniawan
First Published December 31, 2015; pp. 676–683
Fabrication and characterization of nanoparticle MgO/B₄C composite by mechanochemical method

Hakan Gokmese, Bulent Bostan
First Published January 24, 2016; pp. 684–694

Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat

OD Makinde, WA Khan, ZH Khan
First Published January 27, 2016; pp. 695–703

Passive control of nanoparticle of micropolar fluid past a stretching sheet with nanoparticles, convective boundary condition and second-order slip

Wubshet Ibrahim
First Published February 4, 2016; pp. 704–719

Research on the performance of electro-hydraulic proportional flow valve controlled by active pilot pump

Yunxiao Hao, Long Quan, Jiahai Huang
First Published February 16, 2016; pp. 720–731

Sensitivity analysis and optimization of hot-stamping process of automotive components using analysis of variance and Taguchi technique

Abolfazl Khalkhali, Hadiseh Noraie, Morteza Sarmadi
First Published February 22, 2016; pp. 732–746

Geometric process repair model for an unreliable production system with an intermediate buffer

Guoqing Cheng, Binghai Zhou, Ling Li
First Published March 4, 2016; pp. 747–759

Failure rate analysis of jaw crusher using Weibull model

RS Sinha, AK Mukhopadhyay
First Published March 8, 2016; pp. 760–772

Using Taguchi approach for optimizing mechanical properties of hybrid laminates nanocomposite

Amin Hamed Mashhadzadeh, Abdolhossein Fereidoon, Yasser Rostamiyan, Mohammad Mahdi Khatibi, Mohammad Reza Mohammadi, Ali Nikjoo
First Published March 8, 2016; pp. 773–785
Research on vibration suppression method of alternating current motor based on fractional order control strategy

HM Zhao, DY Li, W Deng, XH Yang
First Published March 8, 2016; pp. 786–799

Numerical study of biofluid flow over a backward-facing step: The hydro-thermal behavior in the presence of magnetic field effects

M Mohammadpourfard, F Ghaderi
First Published April 19, 2016; pp. 800–812

Potential for improving efficiency of the internal cylindrical grinding process by modification of the grinding wheel structure—Part II: Grinding wheels made of superabrasive grains

Krzysztof Nadolny, Witold Habrat
First Published March 16, 2016; pp. 813–823

Dissimilar GTAW between AISI 304 and AISI 4340 steel: Multi-response optimization by analytic hierarchy process

Anirban Bhattacharya, Sanchit Singla
First Published April 13, 2016; pp. 824–835

A numerical scheme for optimizing gas liquid cylindrical cyclone separator

Amirhosein Ghasemi, Mehrzad Shams, Mohammad Mahdi Heyhat
First Published April 24, 2016; pp. 836–848

Control design, simulation and validation of a turbo-machinery auxiliary plant

Roberto Conti, Pierluca D’Adamio, Emanuele Galardi, Enrico Meli, Daniele Nocciolini, Luca Pugi, Andrea Rindi, Giulio Lo Presti, Stefano Rossin
First Published April 15, 2016; pp. 849–863

Envelope demodulation based on variational mode decomposition for gear fault diagnosis

Xueli An, Hongtao Zeng, Chaoshun Li
First Published April 17, 2016; pp. 864–870

Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation

Ahmed Zeeshan, Moshan Hassan, Rahmat Ellahi, Muhammad Nawaz
First Published April 26, 2016; pp. 871–879
Technical note

Optimal design of groove shape on passive micromixer using design of experiment technique

Chul-Kyu Kim, Joon-Yong Yoon
First Published April 6, 2016; pp. 880–887

Case study

Optimal performance of plastic pipes’ extrusion process using Min-Max model in fuzzy goal programming

Abbas Al-Refaie
First Published December 8, 2015; pp. 888–898
Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools

Rusdi Nur¹,², MY Noordin¹, S Izman¹ and D Kurniawan¹,³

Abstract
Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Towards sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.

Keywords
Austenitic stainless steel, cutting force, surface roughness, power consumption, tool life, coated carbide, response surface methodology

Introduction
Sustainable production applies to many engineering fields, including machining processes.¹ In turning, as one of the machining processes, sustainable production can be implemented by taking into account the cutting conditions used in the production process, such as the cutting parameters and cutting fluids, the cutting tool performance, the quality of machined surface, and the power consumed for cutting. An essential indication in sustainable production is the minimization of power consumption.²,³ Considering this, necessary steps to evaluate and minimize the power consumption during the machining process should be evaluated.⁴

Previous investigations have been carried out in the machining processes by varying the cutting conditions and measuring the machining responses. However, power consumption is often neglected, and this holds true in the case of turning process. Very limited research has been performed to investigate aspects of machinability, which also includes power consumption. Some researchers have proposed ways to incorporate power consumption as one of the machining responses to consider when performing machinability study by varying the cutting conditions during turning. These include the work by Ezugwu et al.⁵ that developed an artificial neural network model for analyzing and predicting the cutting parameters when turning of Inconel 718 alloy using coated carbide. Cutting forces, power consumption, surface roughness, and flank and nose wears were the responses measured during the experimental machining.⁵ Bhattacharya et al.⁶ utilized Taguchi techniques for investigating the influence of cutting conditions on surface finish and power consumption when turning of carbon steel using multilayer coated carbide tool. The research results showed that the cutting speed had a significant effect on power consumption and

¹Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
²Department of Mechanical Engineering, Politeknik Negeri Ujung Pandang, Makassar, Indonesia
³Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, Korea

Corresponding author:
MY Noordin, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia.
Email: noordin@fkm.utm.my
surface roughness, whereas the other cutting parameters gave no substantial effect on the responses. The study of Hanafi et al. optimized the machining parameters by applying the Taguchi method and gray relational theory when dry turning Polyetheretherketone reinforced with 30% of carbon fibers using TiN coated tools, with minimizing power consumption and surface roughness as the target. It was concluded that the machining responses on the composite are influenced more by the cutting speed and depth of cut. Also, Bhushan analyzed the cutting parameters when turning 7075 Al alloy 15 wt% SiC composite to determine their effect on tool life and power consumption. It was concluded that both tool life and power consumption are functions of the cutting parameters. Toward sustainability of turning process, this should be investigated, creating the need to conduct study on the machinability in turning process, which also considers power consumption.

The material of interest is AISI 316L stainless steel, which presents high corrosion resistance variance among stainless steels. It contains 25 wt% Ni, which is used to produce an austenitic structure which allows hardening. Considering its properties, this AISI 316L stainless steel is often used for structural components in the chemical industry, nuclear plants, as well as medical devices. From machining point of view, it is considered hard to machine because of its low thermal conductivity, high tensile strength, work-hardening rate, and abrasiveness, leading to high cutting force, high cutting temperature, susceptibility to notch wear, built up edge formation, and poor surface finish. Being of high added value, the products made of this stainless steel will have even better notion when fabricated by considering sustainable manufacturing.

A common practice in machining is the use of cutting fluids. Although overall machinability can be improved by reducing friction or temperature at the cutting region, their use should be minimized whenever possible. Attempts to minimize cutting fluid use have been done to the extreme by performing dry machining, without the use of any cutting fluid. Previous research reported dry machining on various workpiece materials, including stainless steels, with success to some extent. Thus, this study also tries dry machining to turn the stainless steel workpiece.

In line with many of the references mentioned before that performed machinability study using statistical tool, this study uses response surface methodology (RSM) as the design of experiment technique to determine the effect of machining parameters on the machining responses. RSM has predictive capability and is useful when there are conflicting results between machining responses, which require optimization or compromise on the input factors. This is usually the case in machining processes. It is not uncommon for contradictions to occur. For example, higher cutting speed provides finer surface finish but will lead to higher power consumption. Of course, the additional benefit of using this RSM as the design of experiments technique is that it needs fewer experiments for the same number of input factors, compared with one-factor-at-a-time technique.

The cutting parameters, i.e. cutting speed and feed, are varied, and their effect on the machining responses is quantified. The machining responses of interest are cutting force, tool life, surface finish, and power consumption. Those machining responses are combination between the common responses in machinability study (cutting force, tool life, and surface finish) and the machining response in the power consumption. This study proposes the incorporation of power consumption, an important consideration in sustainable manufacturing, as a response in machinability of a workpiece material. To the best of the authors’ knowledge, this study is the first to study the machinability of AISI 316L stainless steel, which is dry turned that also includes power consumption as the machining response along with other responses commonly used in a machinability study.

Experimental

The turning experiments were performed using a two axis CNC lathe with a capacity of 8.3 kW maximum power and the spindle speed range from 100 to 6000 rpm. An AISI 316L austenitic stainless steel was used for the workpiece material. The composition of AISI 316L is shown in Table 1.

The cutting tool used for the experiment was a tungsten carbide with multilayered, nanotextured TiCN, Al₂O₃, and TiN coating (Mitsubishi). The tool is designated as ISO CNMG 120408, with 80° diamond shape and 0° relief angle. The length of the cutting edge is 12.7 mm with a thickness of 4.76 mm and cutting point radius of 0.8 mm. The cutting conditions were chosen based on the recommendations suggested by the tool’s manufacturer. The cutting speeds were varied at 90, 150, and 210 m/min, the feed was also varied at 0.10, 0.16, and 0.22 mm/rev, whereas the depth of cut was set at a constant 0.4 mm.

<table>
<thead>
<tr>
<th>Grade</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L</td>
<td>Min</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16.0</td>
<td>2.00</td>
<td>10.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.03</td>
<td>2.0</td>
<td>0.75</td>
<td>0.045</td>
<td>0.03</td>
<td>18.0</td>
<td>3.00</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Note: balance Fe.
The turning process was performed dry (without cutting fluid).

Tool wear progression was measured using digital microscope (Zeiss Stemi 200-C) at every preset cutting time until the tool met one of the tool life criteria. The measurements were done without removing the tool from its holder to minimize error. The tool life criteria were set at maximum flank wear width of 0.1 mm or catastrophic failure. Surface roughness (Ra) was measured by a surface profilometer (Accretech Handysurf) at 0.8 mm cut off length and 4 mm sampling length in each measurement. The cutting forces were recorded during the turning process by a force dynamometer (Kistler 9265B) associated with a multi-channel amplifier to transform output signal from the dynamometer into a readable forces in three directions. Power consumption was measured by setting three portable power monitors (Omron ZNCTX21) at the main power, the spindle drive, and axis drive.

The data analysis on the results was done in such a way that the influence of the independent variables (cutting speed and feed) on the dependent variables (cutting force, surface roughness, power consumption, and tool life) can be quantitatively measured. Regression analysis technique was used to develop the mathematical models for the various responses. A three level full factorial design was used with all combinations of the input variables at three levels were specified.

Results and discussion

There are a total of 11 runs included in the experimental design and the results are shown in Table 2. Note: V_c is cutting speed, F is feed, x_1 is the coded factor of cutting speed, x_2 is the coded factor for feed, F_c is main cutting force, Ra is surface roughness, P_c is power consumption, and T is tool life. For each machining response, empirical model was developed according to guidelines for a three level full factorial design with two input factors at three levels each with two repetitions at the center point, which were established and reported elsewhere. Analysis of variance (ANOVA) was calculated on each model to determine the significance of the model itself and its coefficients. Significance level was set at 95% confidence interval ($Prob > F$ to be maximum at 0.05).

Cutting force

Results for cutting force at various cutting speeds and feeds show that it fits linear model. The ANOVA for the cutting force data is given in Table 3. Having its $Prob > F$ of much less than 0.01, the linear model is valid. As for the coefficients, only the feed was

<table>
<thead>
<tr>
<th>Std</th>
<th>Vc (m/min)</th>
<th>f (mm/rev)</th>
<th>Coded</th>
<th>F_c (N)</th>
<th>Ra (μm)</th>
<th>P_c (kW)</th>
<th>T (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>0.10</td>
<td>-1</td>
<td>140.90</td>
<td>1.19</td>
<td>0.870</td>
<td>4860</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>0.10</td>
<td>0</td>
<td>133.33</td>
<td>1.10</td>
<td>1.062</td>
<td>3960</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>0.10</td>
<td>1</td>
<td>131.67</td>
<td>1.03</td>
<td>1.363</td>
<td>1780</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>0.16</td>
<td>-1</td>
<td>190.51</td>
<td>1.93</td>
<td>0.920</td>
<td>2700</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>0.16</td>
<td>0</td>
<td>185.13</td>
<td>1.44</td>
<td>1.213</td>
<td>1680</td>
</tr>
<tr>
<td>6</td>
<td>210</td>
<td>0.16</td>
<td>1</td>
<td>178.67</td>
<td>1.16</td>
<td>1.494</td>
<td>1080</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>0.22</td>
<td>-1</td>
<td>226.09</td>
<td>2.83</td>
<td>0.991</td>
<td>2520</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>0.22</td>
<td>0</td>
<td>212.29</td>
<td>2.54</td>
<td>1.238</td>
<td>1463</td>
</tr>
<tr>
<td>9</td>
<td>210</td>
<td>0.22</td>
<td>1</td>
<td>206.71</td>
<td>2.39</td>
<td>1.598</td>
<td>960</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>0.16</td>
<td>0</td>
<td>184.69</td>
<td>1.41</td>
<td>1.256</td>
<td>1300</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>0.16</td>
<td>0</td>
<td>182.25</td>
<td>1.43</td>
<td>1.270</td>
<td>1500</td>
</tr>
</tbody>
</table>

Table 3. ANOVA for linear model of cutting force.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>DF</th>
<th>Mean square</th>
<th>F value</th>
<th>$Prob > F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>12698.84</td>
<td>1</td>
<td>12698.84</td>
<td>16.81</td>
<td><0.01</td>
</tr>
<tr>
<td>x_2</td>
<td>12698.84</td>
<td>1</td>
<td>12698.84</td>
<td>16.81</td>
<td><0.01</td>
</tr>
<tr>
<td>Residual</td>
<td>6798.75</td>
<td>9</td>
<td>755.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>19497.59</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
considered as significant factor. Cutting force was insensitive to the change in cutting speed.

The obtained empirical equation of the cutting force \((F_c) \) in the form of actual factor is as stated in equation (1),

\[
F_c = 51.38 + 766.75 \times f
\]

where \(F_c \) is the main cutting force and \(f \) is the feed. For convenience, the equation can be displayed as response surface contour as well as three dimensional surface, as depicted in Figure 1.

The effect of feed to the cutting force is related to the size of the uncut chip thickness. Naturally, the higher the feed, the higher the cutting force as well. This is consistent with the fact that \(F_c \) is the main force acting on the rake face of the tool, and it was confirmed by a report on turning the hardened steel. Considering that the size of uncut chip thickness has no relation with cutting speed, the cutting speed’s effect was not significant to cutting force. This is in agreement with previous studies on various workpiece metals.

Power consumption

For power consumption, it was quadratic model which suits the data. Initial model was developed, but its ANOVA indicated that \(x_1^2 \) and \(x_1 x_2 \) factors were not significant. To improve the model, these factors were omitted, and a new model with partial sum of square by omitting those two factors was obtained. The ANOVA of the power consumption data is as given in Table 4. The quadratic model as well all its coefficients were now considered significant.

The obtained equation for the power consumption \((P_c) \) is as presented in equation (2).

\[
P_c = -0.382 + 4.65E - 03 \times V_c + 10.94 \times f - 31.10 \times f^2
\]

where \(P_c \) is the power consumption and \(V_c \) and \(f \) are the cutting speed and feed, respectively. The response surface contour and 3D surface for equation (2) are depicted in Figure 2.

It is known that to obtain higher spindle speed, higher power is needed by the motor to rotate the spindle. When cutting action takes place, the motor consumes even higher power to maintain the set spindle speed. It is interesting to note that previous studies reported that the change in power consumption is contributed not only by the cutting speed but also by other cutting parameters as well. The results displayed significant influence of both cutting speed and feed on the power consumption of the dry turning process. The relation between the input factor and

![Figure 1. Response surface graphs of (a) contours and (b) 3D surface for cutting force.](image)

| Table 4. ANOVA for partial sum of square of the quadratic model of power consumption. |
|---|----------|----------|----------|----------|----------|
| Source | Sum of squares | DF | Mean square | \(F \) value | Prob > \(F \) |
| Model | 0.52 | 3 | 0.17 | 139.49 | <0.01 | Significant |
| \(x_1 \) | 0.47 | 1 | 0.47 | 374.03 | <0.01 | Significant |
| \(x_2 \) | 0.02 | 1 | 0.02 | 17.02 | <0.01 | Significant |
| \(x_1^2 \) | 0.03 | 1 | 0.03 | 27.42 | <0.01 | Significant |
| Residual | 0.01 | 7 | 0.001 | | | |
| Cor total | 0.53 | 10 | | | | |
the machining response is proportional, which is as expected, and was reported before for turning of steels and various other workpiece materials.1,6,17–20 Although both cutting speed and feed are significant, their effect can be ranked. From Table 4, cutting speed has F value of much higher than feed, and this means cutting speed still dominates the effect. This is in line with report by Bhattacharya et al.,6 which concluded that cutting speed was responsible for 77.4\% of the power consumption. Nonetheless, the finding that feed also gives significant effect on power consumption means it should be also be considered when reduction in power consumption in turning AISI 316L is intended.

Surface roughness

For surface roughness, linear model was suitable, and the ANOVA is given in Table 5. It was found that only the feed is significant to the surface roughness.

The equation of the Ra model is as stated in equation (3) in the form of actual factor.

\begin{equation}
(Ra)^{-1.31} = 1.43 - 5.24 \times f
\end{equation}

where Ra is the surface roughness and f is the feed. The response surface contour and 3D surface for equation (3) are illustrated in Figure 3.

The obtained Ra from the turning at the selected cutting parameters was mostly within finish turning range, which is 0.7–1.5 μm,12,20 especially when the feed was 0.16 or lower. The stainless steel workpiece showed expected behavior that its surface roughness is proportional to feed. Theoretically, surface roughness is a function of nose radius and feed, and hence their proportionality and also why the Ra value was not influenced by the cutting speed. The non-significant effect of cutting speed on the surface roughness suggests that the cutting speeds are within the range of low cutting speed or the material is considered soft.11,12,20

Tool life

For tool life, the quadratic model was best suited. Backward elimination on the factors x_1^2 and x_1x_2 of the initial model was done due to their insignificance. The ANOVA for tool life is given in Table 6.

The obtained equation of the tool life (T) is presented in equation (4).

\begin{equation}
(T)^{-1.5} = -6.55E - 05 + 1.45E - 07 \times V_c + 6.87E - 04 \times f - 1.83E - 03 \times f^2
\end{equation}

where T is the tool life, and V_c and f are the cutting speed and feed, respectively. The response surface contour and 3D surface for equation (4) are shown in Figure 4.
The tool life was longer at lower cutting speed and lower feed. The trend is as expected, considering both input factors contribute to higher tool wear progression. This is in agreement with previous results, which also reported that the effect of cutting speed is higher than feed’s to the tool life.11,12,20

Optimization

Now that empirical models for all machining responses as functions of cutting speed and feed have been obtained, selection of optimum cutting parameters setting can be done. One can set the expected range of each machining response and the range of cutting speed and feed that fit the expectation for all machining response can be determined.4,12,20 As an example, say that arbitrarily, the tool life shall be more than 1808 s (30.1 min), the cutting force should be less than 190 N, the power consumption should be less than 1200 W, and the surface roughness shall be less than 1.48 μm. To achieve those criteria, the range of cutting speed and feed should fall within the gray region of the overlay plot (Figure 5) of all the machining responses.

Another way to use the empirical equations of the machining responses is for determining the optimum

Figure 3. Response surface graphs of (a) contours and (b) 3D surface for surface roughness.

Figure 4. Response surface graphs of (a) contours and (b) 3D surface for tool life.

Table 6. ANOVA for partial sum of squares of the quadratic model of tool life.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>DF</th>
<th>Mean square</th>
<th>F value</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>8.00E-010</td>
<td>3</td>
<td>2.67E-010</td>
<td>28.06</td>
<td><0.01</td>
</tr>
<tr>
<td>x_1</td>
<td>4.54E-010</td>
<td>1</td>
<td>4.54E-010</td>
<td>47.84</td>
<td><0.01</td>
</tr>
<tr>
<td>x_2</td>
<td>2.27E-010</td>
<td>1</td>
<td>2.27E-010</td>
<td>23.93</td>
<td><0.01</td>
</tr>
<tr>
<td>x_2^2</td>
<td>1.18E-010</td>
<td>1</td>
<td>1.18E-010</td>
<td>12.40</td>
<td><0.01</td>
</tr>
<tr>
<td>Residual</td>
<td>2.47E-011</td>
<td>7</td>
<td>9.50E-012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor total</td>
<td>8.66E-010</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cutting parameters when a set of machining response is desired. Figure 6 depicts the graphical optimization of the so-called desirability plot when one wishes to determine the optimum cutting speed and feed which will result in the minimum cutting force, minimum power consumption, minimum surface roughness, and the maximum tool life. For such target, the optimum cutting parameters combination is at feed of 0.19 mm/rev and cutting speed of 125 m/min.

Conclusion

Turning of AISI 316L austenitic stainless steel was performed by using coated carbide tool without cutting fluid. The cutting speed and feed were varied at 90, 150, and 210 m/min and at 0.10, 0.16, and 0.22 mm/rev, respectively. The machining responses evaluated were cutting force, power consumption, surface roughness, and tool life. RSM was used for the design of experiments. It was found that feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Cutting speed was proportional to power consumption and was inversely proportional to tool life, while being not significant to cutting force and surface roughness. This shows that power consumption, which is an important factor in sustainable manufacturing, can be included in machinability study along with other machining responses. The developed empirical models of the machining responses can be used to determine the optimum cutting parameters range, optimum cutting speed, and feed, which will result in the minimum cutting force, minimum power consumption, minimum surface roughness, and the maximum tool life.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Financial supports from the Ministry of Education, Malaysia and Universiti Teknologi Malaysia through Fundamental Research Grant Scheme No. 4F285 are gratefully acknowledged.

References

Country
- United States

Subject Area and Category
- Engineering
 - Industrial and Manufacturing Engineering
 - Mechanical Engineering

Publisher
- SAGE Publications Inc.

Publication type
- Journals

ISSN
- 09544089

Coverage
- 1989-ongoing

Scope
The Journal of Process Mechanical Engineering is a quarterly publication for engineers in industry and academe who are concerned with the process industries. The Journal publishes high-quality papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment. The impact of design on the overall performance of the industrial enterprise, including efficiency, quality, sustainability and waste management is an important feature of the Journal.

Quartiles

<table>
<thead>
<tr>
<th>Year</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Q2</td>
</tr>
<tr>
<td>2000</td>
<td>Q1</td>
</tr>
<tr>
<td>2001</td>
<td>Q1</td>
</tr>
<tr>
<td>2002</td>
<td>Q2</td>
</tr>
</tbody>
</table>

SJR

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>

Citations per document

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>
ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. It measures the scientific influence of the average article in a journal and expresses how central to the global documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor (Thomson Reuters) metric.

Cites per document

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.234</td>
</tr>
<tr>
<td>2000</td>
<td>0.441</td>
</tr>
<tr>
<td>2001</td>
<td>0.263</td>
</tr>
<tr>
<td>2002</td>
<td>0.252</td>
</tr>
<tr>
<td>2003</td>
<td>0.343</td>
</tr>
<tr>
<td>2004</td>
<td>0.410</td>
</tr>
<tr>
<td>2005</td>
<td>0.378</td>
</tr>
<tr>
<td>2006</td>
<td>0.543</td>
</tr>
<tr>
<td>2007</td>
<td>0.461</td>
</tr>
<tr>
<td>2008</td>
<td>0.486</td>
</tr>
</tbody>
</table>

Total Cites vs Self-Cites

![Graph showing Total Cites vs Self-Cites](image)

External Cites per Doc vs Cites per Doc

![Graph showing External Cites per Doc vs Cites per Doc](image)

% International Collaboration

![Graph showing % International Collaboration](image)

Citable documents vs Non-citable documents

![Graph showing Citable documents vs Non-citable documents](image)

Cited documents vs Uncited documents

![Graph showing Cited documents vs Uncited documents](image)

Proceedings of the Institution of Mechanical Engineers

Q2 | Industrial and Manufacturing Engineering

SJR 2017

0.32

powered by scimagojr.com
Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools

Author(s): Nur, R (Nur, Rusdi); Noordin, MY (Noordin, M. Y.); Izman, S (Izman, S.); Kurniawan, D (Kurniawan, D.)

Source: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E JOURNAL OF PROCESS MECHANICAL ENGINEERING
Volume: 231 Issue: 4 Pages: 676-683 DOI: 10.1177/0954408915624861 Published: AUG 2017

Abstract: Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.

Accession Number: WOS:000406532800006

Author Identifiers:

<table>
<thead>
<tr>
<th>Author</th>
<th>ResearcherID Number</th>
<th>ORCID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurniawan, Denni</td>
<td>C-2703-2008</td>
<td>0000-0002-4179-0454</td>
</tr>
<tr>
<td>Nur, Rusdi</td>
<td>T-5958-2017</td>
<td>0000-0002-4985-7086</td>
</tr>
</tbody>
</table>

ISSN: 0954-4089
eISSN: 2041-3009
Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools

DOI: 10.1177/0954408915624861

Abstract
Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range. © I MechE 2015.

Author Keywords
Austenitic stainless steel; coated carbide; cutting force; power consumption; response surface methodology; surface roughness; tool life

Index Keywords
Austenitic stainless steel, Biomedical equipment, Carbide cutting tools, Carbide tools, Chemical industry, Corrosion resistance, Cutting, Cutting fluids, Cutting tools, Electric power utilization, Nuclear fuels, Nuclear power plants, Surface properties, Surface roughness, Turning; AISI316L stainless steel, Austenitic stainless, Coated carbides, Cutting forces, High mechanical properties, Response surface methodology, Sustainable manufacturing, Tool life; Stainless steel

Correspondence Address
Noordin M.Y.; Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Malaysia; email: noordin@fkm.utm.my

Publisher: SAGE Publications Ltd

ISSN: 09544089
CODEN: PMEE
Language of Original Document: English
2-s2.0-85026230497
Document Type: Article
Publication Stage: Final
Source: Scopus
Salam

ini paper ketiga yang mendapat respon dari Journal of Process Mechanical Engineering dan saya telah baiki sesuai comment reviewer dan juga telah dihantar ke Dr. Denni untuk dibaiiki kembali sebelum di proofreading.

---------- Forwarded message ----------
From: <jprocesseng@sagepub.co.uk>
Date: Thu, Aug 6, 2015 at 5:05 PM
Subject: Journal of Process Mechanical Engineering - Decision on Manuscript ID JPME-15-0067
To: denni@utm.my

06-Aug-2015

Dear Dr. Kurniawan:

Manuscript ID JPME-15-0067 entitled "Machining Parameters Effect in Dry Turning of AISI 316L Stainless Steel using Coated Carbide Tool" which you submitted to Journal of Process Mechanical Engineering, has been reviewed. The comments of the reviewer(s) are included at the bottom of this letter.

The reviewer(s) have recommended major revisions to your manuscript. Therefore, I invite you to respond to the reviewer(s)' comments and revise your manuscript. May I also draw your attention to the attached Editorial Checklist as the issues should also be addressed when preparing for submission of your amended version.

To revise your manuscript, log into https://mc.manuscriptcentral.com/jpme and enter your Author Center, where you will find your manuscript title listed under "Manuscripts with Decisions." Under "Actions," click on "Create a Revision." Your manuscript number has been appended to denote a revision. You may also click the below link to start the revision process:

https://mc.manuscriptcentral.com/jpme?URL_MASK=baa59f8e4c844e9591e9a1f098603c68

When submitting your revised manuscript, please respond to the comments made by the reviewer(s) in the space provided. You can use this space to document any changes you make to the original manuscript. In order to expedite the processing of the revised manuscript, please be as specific as possible in your response to the reviewer(s). Please also highlight the changes to your manuscript within the document by using bold or coloured text.

IMPORTANT: Your original files are available to you when you upload your revised manuscript. Please delete any redundant files before completing the submission.
Because we are trying to facilitate timely publication of manuscripts submitted to Journal of Process Mechanical Engineering, your revised manuscript should be uploaded within 6-8 weeks. If it is not possible for you to submit your revision in a reasonable amount of time, we may have to consider your paper as a new submission.

Before submitting your revised manuscript, we would also be grateful if you could please ensure that you have obtained all necessary permissions for any material in your paper that has been previously published. Please e-mail copies of such permissions to the journal office at jprocesseng@sagepub.co.uk when submitting the revised manuscript.

Please note, for legal reasons we would be unable to publish your paper in the journal should permissions not have been granted directly by the copyright holder for any previously published content, including figures and tables. Failure to provide all permissions at this stage may delay publication of your manuscript.

Once again, thank you for submitting your manuscript to Journal of Process Mechanical Engineering and I look forward to receiving your revision.

Sincerely,
Katrina Newitt,
Associate Editor
The Journal of Process Mechanical Engineering Office

Reviewer(s)' Comments to Author:

Reviewer: 1

Comments to the Author
The authors have studied the effects of various cutting parameters on the power consumption and the surface finish and provided a range of optimised parameters to minimise power consumption as well as achieving a good surface finish and tool life. The submitted paper requires a review by a native English speaker to improve the English level. The literature review is very weak and the novelty of the results is not clear. The discussion section should be improved specifically on the effect of cutting speed on cutting forces and power consumption. The authors should also compare their findings with the published results.

Reviewer: 2

Comments to the Author
This paper investigates the influence of cutting parameters on the machining responses in dry turning AISI 316L stainless steel. I think this paper can be acceptable subject to the following revisions.
1. The title should be “Machining Parameters Effect in Dry Turning of AISI 316L Stainless Steel using Coated Carbide Tool”. But in page 2 of the manuscript, the title is “Power Consumption as Machining Response in Dry Turning of AISI 316L Stainless Steel using Coated Carbide Tool”.
2. In the abstract, “various cutting speeds (0.10, 0.16, and 0.22 mm/rev) and feeds (90, 150, and 210 mm/min)” should be changed to “various cutting speeds (90, 150, and 210 mm/min) and feeds (0.10, 0.16, and 0.22 mm/rev)”. And in the first paragraph of page 4, “The cutting speeds were varied at 0.10, 0.16, and 0.22 mm/rev, the feed was also varied at 90, 150, and 210 mm/min” should be changed to “The cutting speeds were varied at 90, 150, and 210 mm/min, the feed was also varied at 0.10, 0.16, and 0.22 mm/rev”.
3. The English should be improved.

Dari: Denni Kurniawan (denni@utm.my)
Kepada: izman@fkm.utm.my; ar_rusdi_nur@yahoo.com
Tanggal: Minggu, 20 Desember 2015 17.03 GMT+8

Assalam,

Dilampirkan pruf paper yang baru accepted. Silakan disemak, dan kalau ada apa-apa yang perlu diubah/ditambahkan, sila maklumkan, dan nanti akan saya masukkan.

Thank you and best wishes,
Denni

---------- Forwarded message ----------
From: Denni Kurniawan <denni@utm.my>
Date: Sun, Dec 20, 2015 at 4:41 PM
To: Prof Noordin Mohd Yusof <noordin@fkm.utm.my>

assalam Prof,

Beberapa yang saya sudah tukar:
- Corresponding Author nya adalah Prof
- Pertanyaan yang timbul sudah saya jawab.

Minta kebenaran untuk menuliskan afiliasi saya di Dongguk, utk keperluan KPI disana.

Thank you and best wishes,
Denni

---------- Forwarded message ----------
From: <sage.journals2@cenveo.com>
Date: Thu, Dec 17, 2015 at 8:52 PM
To: denni@utm.my
Cc: Deepshikha.Pandita@sagepub.in

Dear Dr. Denni Kurniawan,

I attach the proof of your article which is to be published in Proc IMechE Part E: J Process Mechanical Engineering.

It is SAGE’s aim to publish your work as quickly as possible. Could you therefore please read, correct and return this proof to me within 4 working days. This proof represents your final opportunity to review your article prior to its publication, so do please read through this information carefully.

Please return corrections to me by email, ideally by annotating the PDF (see guidelines on the first page of your proof). This is the method that is currently the fastest and most reliable for transmitting your corrections to the typesetter. If you are unable to do this, please email your changes in the form of a list (including page number, paragraph and line in which the correction has to be made).

This proof has been lightly edited for grammar and style, and should be accurate in respect of the copy supplied.

Please read the proof for errors or missing elements. However, please do not rewrite or make other major changes affecting layout or the final extent.
Any colour figures have been incorporated for the online version only. Colour printing in the journal can be arranged for a charge. Please contact me for further details.

Online First publication

We will publish the corrected, final article online (Online First) as soon as possible, paginated from p.1 as now. As soon as this happens you will be sent an email enabling you to access it.

Issue/print publication

After publishing Online First we will include your article in an issue for publication online and print. These details are not yet fixed, but please note that we will make no further updates apart from adding volume, issue and page numbers. Therefore, please be sure to send all of your corrections now.

To receive notification of when your article and all new journal content is published, sign up to our Contents Alert service at http://online.sagepub.com/cgi/alerts.

Finally, we hope you are pleased with your proof and thank you for your co-operation.

Best regards,

Iruchan I.

Cenveo Publisher Services.

31, Kempapura, Hebbal

Bangalore 560 024,

India

Tel: +91 80 4000 4888

Fax: +44 20 3370 7951

Email: sage.journals2@cenveo.com www.cenveo.com

Electronic access to the published journal content is available through a range of hosting intermediaries to all authorised faculty and students at institutions holding a current subscription to the journal. Point your librarian to http://www.sagepub.co.uk/ejournals/ for more information if this is not already available at your institution.

Publish Ahead of Print with OnlineFirst

OnlineFirst is a feature by which completed articles are published online prior to their inclusion in a print issue, offering authors the advantage of making their research accessible to the public in a more timely manner.* Each OnlineFirst manuscript is citable by the publication date of the manuscript's first online posting and the Digital Object Identifier (DOI), providing a persistent, permanent way to identify manuscripts published in the online environment. You can cite OnlineFirst articles as follows:

Author's last name, first initials. Article title. *Journal Title*. Prepublished month day, year; DOI: 10.1177/0123456789123456

Once your article has completed the production process and before it is published in a print issue, it will be posted online. You can access PIE OnlineFirst articles on the Web at http://pie.sagepub.com/pap.dtl. Once posted online, articles may not be retracted or edited.

*Online subscribers and those who pay for pay-per-view access can view these PDFs, but abstracts are available to the public to view for free. OnlineFirst articles are fed to search engines and citation and content repositories, such as PubMed, MEDLINE, CrossRef, and Google Scholar, and therefore are available to be accessed and cited.

Final PDF Policy

Please note that this PDF file remains the property of SAGE Publications and has been supplied for your use solely for the purpose of expediting proof checking. It is not the final PDF of the article and should not be circulated or used for any other purpose.
Dear Denni Kurniawan,

I hope you are doing well!

This is in regard to your article “Machining Parameters Effect in Dry Turning of AISI 316L Stainless Steel using Coated Carbide Tool” which is scheduled for the PIE August issue.

While working on the article, I noticed that the figures 1,3,5,6 are of poor quality. Could you please provide me the better quality figures to be inserted in the article.

It would be great if you could provide me the same by 13th July in order to publish the issue on time.

Please let me know in case of any question. I look forward to hearing from you.

Thank you!

Regards,

Arshiya

Arshiya Singhal
Associate Production Editor - Journal Production
SAGE Publications India Pvt Ltd
Suite 2426, Doon Express Business Park
Subhash Nagar (Opp. Transport Nagar)
Dehradun 248002, INDIA

T: +91 (11) 135-6603009; Extn: 398
www.sagepublishing.com
Dear Denni Kurniawan,

I hope you have received the below email.

This is a second reminder for the quality of the figures for article “Partial Slip under Complete Contacts near adjacent Corners”.

Could you please provide me better quality figures by the end of the day as the issue is on hold and can only be further processed after receiving your response on the same.

Please let me know if you have any questions.

Look forward to your reply.

Thank you!

Regards,
Arshiya
Dear Arshiya,

Thank you for contacting me. Appreciate your handling of our article. Attached are the said figures with better resolution.

Thank you and best wishes,
Denni
notified that any action in reliance upon, or any review, retransmission, dissemination, distribution, printing or copying of this Message or any part thereof by anyone other than the intended recipient(s) is strictly prohibited. Any opinions, conclusions and other information in this Message that do not relate to the official business of UTM shall be understood as neither given nor endorsed by UTM. UTM shall not be liable for loss or damage caused by viruses transmitted by this Message.
Dear Denni Kurniawan,

Thank you so much for your swift response.

Have a great day ahead!

Regards,

Arshiya