Periodicals

Advanced Materials Research
ISSN: 1662-8985

Volumes (/AMR)
My eBooks (/AMR/ebooks)
Details (/AMR/Details)
Editorial Board (/AMR/Editors)

Editor(s) in Chief

Prof. Xiao Zhi Hu
University of Western Australia, School of Mechanical and Chemical Engineering; Perth, Australia, WA 6009;

Prof. Alan Kin Tak Lau
Swinburne University of Technology, Faculty of Science, Engineering and Technology; John Street, Hawthorn, Australia, VIC 3122;

Editorial Board

Dr. Peng Cao
University of Auckland, Department of Chemical and Materials Engineering; Private Bag, Auckland, New Zealand, 92019;

Prof. Ionel Chicinaş
Technical University of Cluj-Napoca, Faculty of Materials and Environmental Engineering, Department of Materials Science and Engineering; 103-105 Muncii Blv., Cluj-Napoca, 400641, Romania;

Prof. Prafulla K. Jha
Maharaja Sayajirao University of Baroda, Department of Physics, Faculty of Science; Vadodara, India, 390 002;

Prof. Heinz Palkowski
Clausthal University of Technology, Institute of Metallurgy; Robert-Koch-Strasse 42, Clausthal-Zellerfeld, 38678, Germany;

Wolfgang Sand
University of Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology; Geibelstrasse 41, Duisburg, 47057, Germany;

Dr. Ching Hua Su
Preface

The 1st International Materials, Industrial, and Manufacturing Conference (MIMEC2013) is held in Johor Bahru, 4 – 6 December 2013. It is grateful that the Proceedings of MIMEC2013 is completed. In accordance to its name, Proceedings of MIMEC2013 is publishing manuscripts within the area of Materials Engineering, Industrial Engineering, and Manufacturing Engineering. Considering the complexity and multidisciplinary nature of engineering problems, manuscripts on related fields or of interdisciplinary nature are also included. The Proceedings of MIMEC2013 is published in two issues, and this book is the first of them. On behalf of the Organizing Committee, I would like to thank the Authors for choosing MIMEC2013 to publish their works and to congratulate them on the publication of their manuscripts in MIMEC2013 Proceedings.

I would also like to express my appreciations to all who have supported the organizing of MIMEC2013. To the core team: Prof. Izman Sudin (General Chair), Prof. Noordin Mshd Yusof (International Scientific and Advisory Board Chair), and Dr. Fethia M. Nor (Organizing Vice Chair). It was due to their support this idea of organizing an international conference can realize. Sincere gratitude is also expressed to International Scientific and Advisory Board members, Session Developers, Organizing Committee members, Keynote Speakers, Invited Speakers, Authors, Reviewers, Participants, Volunteers, Students, and Crew who support and are involved in organizing this international conference. I would also like to extend the appreciation to sponsors and exhibitors, institutions/agencies/organizations/individuals that support/sponsor the works of the Authors and the publishing/registration fees and related expenses.

I hope this MIMEC2013 Proceedings can benefit the authors, the readers, and public. It is intended that this conference series will continue and flourish. Please continue and extend your support to us. Pardon for any lack of service and inconvenience. Let us know how to serve you better.

Thank you and best wishes.

Denni Kurniawan
Editor, MIMEC2013 Proceedings
Organizing Chair, MIMEC2013
Table of Contents

Preface

I. Materials Engineering

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Phase Epitaxy of Si-Doped AlN at 1300 °C in Ga-Al Melt</td>
<td>3</td>
</tr>
<tr>
<td>A.R. Setiawan, M. Adachi and H. Fukuyama</td>
<td></td>
</tr>
<tr>
<td>Influence of Heat Treatment Cooling Mediums on the Degradation Property of Biodegradable Zn-3Mg Alloy</td>
<td>7</td>
</tr>
<tr>
<td>M.S. Dambatta, S. Izman, H. Hermawan and D. Kurniawan</td>
<td></td>
</tr>
<tr>
<td>An Expert System for Life Prediction of Woven-Roving GFRE Closed End Thick Tube Subjected to Combined Bending Moments and Internal Hydrostatic Pressure Using Artificial Neural Network</td>
<td>12</td>
</tr>
<tr>
<td>M.N. Abouelwafa, H.A. El-Gamal, Y.S. Mohamed and W.A. Al-Tabey</td>
<td></td>
</tr>
<tr>
<td>Mineral Matter Study in Adaro Coal-EBF Blends to Mitigate Ash Slagging Problem in the Gasification Process</td>
<td>18</td>
</tr>
<tr>
<td>N.F. Othman and M.H. Boosroh</td>
<td></td>
</tr>
<tr>
<td>Evaluation of the Effect of Bismuth on Mg₂Si Particulate Reinforced in Al-20%Mg₂Si In Situ Composite</td>
<td>22</td>
</tr>
<tr>
<td>N.A. Nordin, S. Farahany, A. Ourdjini, T.A. Abubakar and E. Hamzah</td>
<td></td>
</tr>
<tr>
<td>Effect of Rare Earth Addition on Microstructure and Mechanical Properties of Al-Si Alloys: An Overview</td>
<td>27</td>
</tr>
<tr>
<td>S.L. Joy-Yii and D. Kurniawan</td>
<td></td>
</tr>
<tr>
<td>Simulation of Laminar Mixing in Fractal Perforated Plate Static Mixers</td>
<td>31</td>
</tr>
<tr>
<td>B. Manshoor, I. Zaman, Z. Ngali and A. Khalid</td>
<td></td>
</tr>
<tr>
<td>Effects of Various Seeding Methods on Multi-Layered Diamond Coatings Deposited via Hot Filament Chemical Vapor Deposition</td>
<td>36</td>
</tr>
<tr>
<td>T.M. Yong and E. Hamzah</td>
<td></td>
</tr>
<tr>
<td>Time-Frequency Signal Analysis in Machinery Fault Diagnosis: Review</td>
<td>41</td>
</tr>
<tr>
<td>K.H. Hui, L.M. Hee, M.S. Leong and A.M. Abdelrhman</td>
<td></td>
</tr>
<tr>
<td>Analysis of Axial Vibration in the Laminated Rubber-Metal Spring</td>
<td>46</td>
</tr>
<tr>
<td>M.A. Salim, A. Putra and M.A. Abdullah</td>
<td></td>
</tr>
<tr>
<td>Effect of Variation in Grain Size on High Temperature Creep Test of Fe-Ni-Cr Alloy</td>
<td>51</td>
</tr>
<tr>
<td>E. Hamzah, M. Mudang and M.A. Khattak</td>
<td></td>
</tr>
<tr>
<td>Effect of Grain Size on the Isothermal Oxidation of Fe-33Ni-19Cr Alloys at 700 °C</td>
<td>56</td>
</tr>
<tr>
<td>N. Parimin, E. Hamzah and A. Amrin</td>
<td></td>
</tr>
<tr>
<td>Performance and Emission of a Diesel Engine Fuelled with Preheated Palm Oil Biodiesel under High Load Conditions</td>
<td>61</td>
</tr>
<tr>
<td>A. Khalid, N. Mustaffa, A.J. Alimin, B. Manshoor, S.M. Basharie and A. Sadikin</td>
<td></td>
</tr>
<tr>
<td>Spray Characteristic of Diesel-Water Injector for Burner System</td>
<td>66</td>
</tr>
<tr>
<td>A. Khalid, S.H. Amirnordin, L. Lambosi, B. Manshoor, M.F. Sies and H.B. Salleh</td>
<td></td>
</tr>
<tr>
<td>Development of Hybrid Semi-Analytical and Finite Element Analysis to Calculate Sound Radiation from Vibrating Structure</td>
<td>71</td>
</tr>
<tr>
<td>A. Putra, N. Shyafina, N. Muhammad, H. Bakri and N.F. Saari</td>
<td></td>
</tr>
<tr>
<td>Effect of Solder Volume on Interfacial Reaction between SAC405 Solders and EN(B)EPIG Surface Finish</td>
<td>76</td>
</tr>
<tr>
<td>O. Saliza Azlina, A. Ourdjini, A. Amrin and I. Siti Rabiatull Aisha</td>
<td></td>
</tr>
<tr>
<td>Wear Properties of Oil Palm Cellulose Fibre Reinforced Polymer Composites</td>
<td>81</td>
</tr>
<tr>
<td>D. Sujan, C.W. Nguong, S.N.B. Lee and M. G. Zewge</td>
<td></td>
</tr>
<tr>
<td>Static Analysis of a Laminated Rubber-Metal Spring Using Finite Element Method</td>
<td>86</td>
</tr>
<tr>
<td>A. Putra, S. Norfarizan, H. Samekto and M.A. Salim</td>
<td></td>
</tr>
<tr>
<td>Characterizations of Zeolite, Polyamine and Zeolite/Polyamine as Antifouling Materials for Marine Applications</td>
<td>91</td>
</tr>
<tr>
<td>A. Ahdash, E. Hamzah, A. Ourdjini and A. Abdolah</td>
<td></td>
</tr>
</tbody>
</table>
Effect of High Strain-Rate Thermomechanical Processing on Microstructure and Mechanical Properties of Ti-10V-2Fe-3Al Alloy
P. Skubisz, M. Packo, K. Mordalska and T. Skowronek

Inclined Injection of Supersonic Steam into Subcooled Water: A CFD Analysis
A. Khan, K. Sanaullah, M.S. Takriff, H. Zen and L.S. Fong

Effect of Ageing Temperatures on the Transformation Behaviour of Ti-50.7at.%Ni Shape Memory Alloy
K. Hastuti, E. Hamzah and J. Hashim

Analysis of Residual Wavelet Scalogram for Machinery Fault Diagnosis
L.M. Hee, M.S. Leong and K.H. Hui

Effect of Elements Cerium and Lanthanum on Eutectic Solidification of Al-Si-Cu near Eutectic Cast Alloy
M.B.A. Asmael, R. Ahmad, A. Ourdjini and S. Farahany

Blade Faults Classification and Detection Methods: Review
L.M. Hee, M.S. Leong and K.H. Hui

The Influence of γ-Irradiation on the Structure and Properties of the Cu-11.5 wt. % Al-4 wt. % Ni Shape Memory Alloys
S.N. Saud, E. Hamzah, T.A. Abubakar, A. Refaei and R. Hosseinian

Vibration Analysis of Multi Stages Rotor for Blade Faults Diagnosis
A.M. Abdelrahman, M.S. Leong, L.M. Hee and K.H. Hui

Bioremediation of Biofuel-Soil Contamination by Using Pseudomonas putida
N.M. Sunar, Q.A. Emparan, A.T.A. Karim, S.F.M. Noor, M. Maslan, F. Mustafa and N. Khaled

The Effectiveness of Bioremediation Treatment for Diesel-Soil Contamination
N. Mohamed Sunar, Q.A. Emparan, A.T. Abdul Karim, S.F.M. Noor, M. Maslan, F. Mustafa and N. Khaled

Determining the S-N Fatigue Curve for Lava Zirconium Dioxide
M. Wirwicki and T. Topoliński

Development of Microbial Metabolic Processes to Repair Concrete Joint Leakage
F. Kubo, S. Okazaki and I. Ujike

Acquisition of Capillary Pore Structure by X-Ray CT and Visualization of Flow by Numerical Analysis
M. Shibata, S. Okazaki and I. Ujike

Simulation of Drill Pipe Lateral Vibration due to Riser's Oscillation
N. Al Batati, F.M. Hashim and W. Pao

Corrosion Behavior of Low Carbon Steel Welded Joint in NaCl Solution
M.F. Mamat and E. Hamzah

Effect of Heat Treatment on Mechanical Properties and Susceptibility to Stress Corrosion Cracking of Aluminium Alloy
Z. Nur Ismarrubie, K.W. Loh and H. Yussof

Three-Dimensional Modelling and Finite Element Analysis of an Ankle External Fixator
M.H. Ramlee, M.R.A. Kadir and H. Harun

Evaluation of Epoxidized Natural Rubber Latex Based Pressure Sensitive Adhesives Containing Hydrocarbon and Rosin Ester Tackifier Dispersions on Adhesive Properties
A.B. Rohani, S. Manroshan and V. Devaraj

Influence of Polyethylene Thickness on Axis Pin in Linked Elbow Implant
M. Heidari, M.N. Harun and A. Syahrom

Strength Prediction of Notched Woven Composite Plates Using a Cohesive Zone Approach
H. Ahmad, A.D. Crocombe and P.A. Smith

Synthesis and Characterization of Novel Hybrid Ladderlike Polysilsesquioxanes Containing Polypropylene Moieties
D.S. Park, T.S. Ha, J.H. Lim and K.M. Kim

A Well-Condition Asymptotic Waveform Evaluation Method for Heat Conduction Problems
M.S. Rana, K. Jeevan, R. Harikrishnan and A.W. Reza

The Effect of Cannulated Screw Placement Angle in the Management of Femoral Neck Fracture
M.F. Ishak, M.R.A. Kadir, H. Harun and S. Abdul Rahman
Investigation of Intermetallic Phase Formation and Structural Analysis in Annealed Al/Cu Bilayer Thin Films

Improvement of Cylinder Buckling Knockdown Factor through Imperfection Sensitivity
M.S. Ismail, B.T.H.T. Baharudin, Z. Talib and S.A. Yahya 226

Mathematical Modeling of Decarburization and Oxidation during Reheating Process of SAE1070 Steel Billets
W.A. Gouveia, V. Seshadri, I.A. Silva and C.A. Silva 231

Tensile and Thermal Properties of Bambusa arundinacea and Dendrocalamus asper Culm Fibers
H. Ardhyananta, F. Abdul, Widyaastuti, Sulistijono, A. Hassan and D. Kurniawan 237

XRD Investigations on Film Thickness and Substrate Temperature Effects of DC Magnetron Sputtered ZnO Films
J.W. Hoon, K.Y. Chan and C.Y. Low 241

In Vitro Analysis of Hydroxyapatite Coated Bio-Additive Manufactured Implant
K. Harirhan and G. Arumaikkannu 246

The Effects of Solution Baths to the Microstructure and Thickness of Ni-Ti Plating by High Speed Plating
N. Zaimah and M.S. Hussain 251

Characterization of Nigerian Clay as Porous Ceramic Material
M. Abubakar, A.B. Aliyu and N. Ahmad 256

Characterizations of Physical Properties of Sn-Bi Solder Alloy
S. Amares, M.N. Ervina Efzani and T.C. Yap 261

Finite Element Simulation: The Effects of Loading Modes at Different Anatomical Sites of Trabecular Bone on Morphological Indices
S.J. Fatihhi, S. Ardiyansyah, M.N. Harun, A.A.R. Rabiatul, A. Jaafar and Afriwardi 266

Finite Element Analysis of Fatigue in Pipelines due to Slug Flow
A.O. Mohmmed, H.H. Al-Kayiem, M.S. Nasif and Z.I. Mohammed 271

In Situ Detection of Partial Discharge Using Leakage Current, Fiber Optic Sensor and Piezoelectric Sensor Techniques
M.M. Yaacob and M.A. Alsaedi 277

Partial Discharge Detection Using Acoustic and Optical Methods in High Voltage Power Equipments: A Review
M.A.R. Al Saedi and M.M. Yaacob 283

Application of Vickers Indentation Cracking to the Evaluation of Mechanical Properties of very Thin Metallic Films
Y. Nakamura 287

Tensile Properties and Fatigue Strength in High Humidity in Extruded 7075 Al Alloys with Different Aging Conditions
Y. Nakamura, N. Kawagoiishi and K. Kariya 292

Experimental Investigation on Free Vibration of Foam-Core Sandwich Plate with and without Circular Polymer Columns
B. Abdi, S. Azwan, A. Ayob, R.A. Rahman and R.A. Abdullah 297

Quasi-Static Flexural and Tensile Behavior of Glass Fiber Reinforced Polymer
S. Azwan, B. Abdi, M.Y. Yahya and A. Ayob 302

Enhanced Functional Properties of Natural Fiber-Reinforced Composites
H. Takagi, K. Liu, A.N. Nakagaito and Z.M. Yang 306

Study of Wear Prediction on Total Ankle Replacement
A.M.S. Putra, M.N. Harun and S. Ardiyansyah 311

Lubricant Potentiality of Degraded Palm Oil and Effect of Free Fatty Acid Addition
K. Ikeda, K. Tomohiro and H. Ito 316

Quasi-Static Flexural and Indentation Behavior of Glass Fiber Reinforced Polymer Composite Sandwich Panel
S. Azwan, B. Abdi, M.Y. Yahya and A. Ayob 320

Linear Elastic Analysis of Bovine Cortical Bone under Compression Loading
T.P. Ng, S.S.R. Koloor, J.R.P. Djuansjah and M.R.A. Kadir 324

Maerogel: Alternative for Thermal Barrier Coating Topcoat
I.S.M. Zulkifli, M.A.M. Yajid, H. Hamdan and M.N.M. Muhid 330
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the Effect of Fluid Medium toward Synthetic Cancellous Bone Structure</td>
<td>335</td>
</tr>
<tr>
<td>Simulation of MEMS Capacitive Thermal Sensor Based on Tip Deflection of a Functionally Graded Micro-Beam</td>
<td>340</td>
</tr>
<tr>
<td>Hydrogen Adsorption of Carbon Nanocone Arrays: Influences of Cone Arrangements</td>
<td>345</td>
</tr>
<tr>
<td>Piping Vibration due to Pressure Pulsations: Review</td>
<td>350</td>
</tr>
<tr>
<td>Review: Effect of Alloying Element on Al-Si Alloys</td>
<td>355</td>
</tr>
<tr>
<td>Mechanical Behavior of Functionally Graded Sandwich Hollow Cylinders under Internal Pressure</td>
<td>360</td>
</tr>
<tr>
<td>A Delamination in a Three Layers Laminated Beam Subjected to Thermal Gradient</td>
<td>367</td>
</tr>
<tr>
<td>Three-Dimensional Potential and Electric Field Distributions in HV Cable Insulation Containing Multiple Cavities</td>
<td>372</td>
</tr>
<tr>
<td>Composition Modification of Electroplated Nickel Interlayer on Tungsten Carbide Substrate by Thermal Carburizing</td>
<td>378</td>
</tr>
<tr>
<td>A Novel Iterative Method for Simulating Patient-Specific Optimal Deformation and Fit of Fracture Fixation Plates</td>
<td>382</td>
</tr>
<tr>
<td>Modelling the Elastic Constants of Cubic Zirconia Using Molecular Dynamics Simulations</td>
<td>387</td>
</tr>
</tbody>
</table>
| Electro Synthesized MoTe
2
Thin Films and their Semiconductor Studies towards Photoelectrochemical Cell | 392 |
| Influence of Graphite Reinforcement on Mechanical Properties of Aluminum-Boron Carbide Composites | 398 |
| Failure Analysis of Cementless Hip Joint Prosthesis | 403 |
| Surface Modification of 2205 Duplex Stainless Steel by Low Temperature Thermochemical Hybrid Heat Treatment at 450°C | 408 |
| Influence of Fillers Surface Characteristics on Bound Rubber Properties of Filled Natural Rubber Compounds | 412 |
| Finite-Element Study on Effect of String Tension toward Coefficient of Restitution of a Badminton Racket String-Bed | 417 |
| Visible-Light Photodegradation of Diisopropanolamine Using Bimetallic Cu-Fe/TiO
2
Photocatalyst | 421 |
| Microwave Hybrid Heating of Materials Using Susceptors - A Brief Review | 426 |
| Tensile Behaviour of Al5052 Alloy Sheets Annealed at Different Temperatures | 431 |
| Influence of Bias Voltage on Corrosion Resistance of TiN Coated on Biomedical TiZrNb Alloy | 436 |
| Analysis of Contamination Soil with Cu from Road Side by Using Laser Ablation Technique | 441 |
| Effect of CaO on Barium Zinc Tantalate (BZT) Dielectric Properties | 446 |
Nanoreinforcement of Pectin Film to Enhance its Functional Packaging Properties by Incorporating ZnO Nanoparticles
N.E. Suyatma, Y. Ishikawa and H. Kitazawa

Preparation of Ni Loaded on Zeolite and its Application for Conversion of Glycerol to Hydrogen
R. Mat, J. Buhari, M. Mohamed, A. Johari, T.A.T. Abdullah and A. Ali

Influence of Carbon Concentrations in Reducing Co and Cr Ions Release in Cobalt Based Implant: A Preliminary Report

Adhesion Strength of HFCVD Diamond Coating on WC Substrate Seeded with Diamond and Different Ratios of SiC Powders
E.M. Nazim, S. Izman, A. Ourdjini, T.A. Abubakar and H. Mas-Ayu

Analysis of Building Materials for Indoor Thermal Performance and Thermal Comfort
H. Djamila

Efficiency of Visible Light Assisted Fenton Oxidation of Diisopropanolamine (DIPA) of Natural Gas Industry Wastewater
R.L.L. Zhi, M.A. Bustam, N. Riaz and A.M. Shariff

Short-Term Breakdown in Silicone Rubber Based Nanocomposites Caused by Electrical Treeing
A.A.A. Jamil, M.H.B. Ahmad, M. Kamarol, M. Mariatti and M.A.M. Piah

II. Industrial Engineering

Recycling of Aluminium - Developing Design Criteria for Aluminium Cans Compressor
T.O. Kowang, C.S. Long, A.B.M. Rasli, M.A. Bin Mohd Daril and I. Mustapha

The Utilization Potential of Rice Husk as an Alternative Energy Source for Power Plants in Indonesia
M. Anshar, A.S. Kader and F.N. Ani

Knowledge Spillover, Absorptive Ability and Performance of Firms in High-Tech Clusters
Z.Z. Pan and Y.H. Liu

The Need of End-of-Life Vehicles Management System in Malaysia
T.N.A.R. Mamat, M.Z.M. Saman and S. Sharif

Evaluating ARIMA-Neural Network Hybrid Model Performance in Forecasting Stationary Timeseries
S.N. Seyedi, P. Rezvan, S. Akbarnatajibisheh and S.A. Helmi

Performance Measurement System for Sustainable Supply Chain Management
M.E. Torabizadeh, M.Y. Noordin and M.S. Awaluddin

A Hybrid Fuzzy MCDM Approach for Sustainable Third-Party Reverse Logistics Provider Selection
G. Tajik, A.H. Azadnia, A.B. Ma'aram and S.A.H.S. Hassan

Probabilistic Formulation for Emergency Facility Location in a Divided Area
S.A. Mirzapour, K.Y. Wong, S.S. Hosseini and S. Shiripour

Multi-Floor Facility Layout Improvement Using Systematic Layout Planning
S.S. Hosseini, K.Y. Wong, S.A. Mirzapour and R. Ahmadi

ANFIS Based Effluent pH Quality Prediction Model for an Activated Sludge Process
M.S. Gaya, N.A. Wahab, Y.M. Sam and S.I. Samsuddin

Comparison of ANFIS and Neural Network Direct Inverse Control Applied to Wastewater Treatment System
M.S. Gaya, N.A. Wahab, Y.M. Sam and S.I. Samsuddin

Technology Management: Developing an Innovation Model for Research Universities in Malaysia
T.O. Kowang, T.M. Yee, C.S. Long, A.B.M. Rasli and F.A.A. Bakar

A Knowledge-Based Analytics System via Online Monitoring of Dissolved Gas in Power Transformer – A Conceptual Framework
M.R.A. Rahman and M.I. Ridwan

A Hybrid Genetic Algorithm for Solving Job Shop Scheduling Problems
H. Piroozfard, A. Hassan, A.M. Moghadam and A. Derakhshan Asl
Solving an Industrial Shop Scheduling Problem Using Genetic Algorithm
A.M. Moghadam, K.Y. Wong, H. Piroozfard, A. Derakhshan Asl and T. Shanty Hutajulu 564

Solving a Capacitated p-Median Location Allocation Problem Using Genetic Algorithm: A Case Study
A.M. Moghadam, H. Piroozfard, A.B. Ma'aram and S.A. Mirzapour 569

Recycler Selection Using Fuzzy AHP by Considering Sustainability
G. Khodaei, K.Y. Wong and M.K. Tiwari 574

Fuzzy Logic Approach for Assessing Sustainability: Methodology Development for Hollow Fiber Membrane Module
S. Mahmood, A.R. Hemdi, M.Z.M. Saman and M.Y. Noordin 579

Pattern Recognition Using Mahalanobis-Taguchi System on Connecting Rod through Remanufacturing Process: A Case Study
M.Y. Abu, K.R. Jamaludin and F. Ramli 584

Preliminary Framework of Sustainable Maintenance Performance Measurement Systems for Automotive Companies
E. Sari, A.B.M. Shaharoun and A.B. Ma’aram 590

Modeling and Simulation of a Heat Recovery Steam Generator Using Partially Known Design Point Data
M. G. Zewge, T.A. Lemma, A.A. Ibrahim and D. Sujan 596

A Review of Ergonomics and Simulation Modeling in Healthcare Delivery System
A. Anjomshoae, A. Hassan and M.R. Abdul Rani 604

Considered Values for a Supplier Selection Case at an Automotive Company
F. Guerhardt and R.M. Vanalle 609

Review of the Relationship between Reverse Logistics and Competitiveness

A Review of Inventory Management for Remanufacturing Environment
V.A. Pourghadim, M.Y. Noordin and K.Y. Wong 618

A Conceptual Model of Work Productivity Associated with Work-Related Musculoskeletal Disorders in the Industrial Repetitive Task
N. Mohd Nur, S.Z.M. Dawal and M. Dahari 623

Competencies of Work in Agricultural Research Units
M.d.L.S. Luz and J.A. Camarotto 627

Size Optimization Using Normalized Radial Basis Function and Bat Algorithm
T.A. Lemma and M.H. Fakhruled 631

Taguchi Method Approach for Recyling Chip Waste from Machining Aluminum (AA6061) Using Hot Press Forging Process
M.S. Shahrom, A.R. Yusoff and M.A. Lajis 637

A Survey on Lean Manufacturing Tools Implementation in Malaysian Food and Beverages Industry Using Rasch Model
N.S. Khusaimi, A. Jaffiar and N. Yusoff 642

Semi-Quantitative Risk Assessment Matrix for Rotating Equipment
M.A. Abd Majid, R.K. Wassan and A.A. Mokhtar 647

Low-Cost Strategy Factors in Airline Industry: The AirAsia Case
A.R. Jeddi, N.G. Renani, A. Khademi, V. Shokri and M.Y. Noordin 652

Assessment of Human Factor Performance Using Bayesian Inference and Inherent Safety
N.D.A. Wahab, R. Rusli, A. Mohd Sharriff, A. Buang and N.A. Wahab 658

Researches on Mitigation of Risks of Logistics Finance Caused by Information Not Fully Shared
X.H. Sun and X.J. Chu 663

Critical Success Factors for Lean Manufacturing: A Systematic Literature Review an International Comparison between Developing and Developed Countries
S. Zargun and A. Al-Ashaab 668

Preliminary Work Towards Development of a Dynamic Job Shop Scheduling Model
W.N.W. Hussin, A. Hassan, A.H. Halim and Z. Zakaria 682

Discovering Barriers of Lean Manufacturing System Implementation in Malaysian Automotive Industry
E.N. Roslin, A. Shamsuddin and S.Z.M. Dawal 687

Conceptual Optimization Model of Inventory/Distribution Network with Multi Role Nodes
N.M.H. Omar, M.M. Tap and N. Redzuan 692
A Conceptual Methodology for Recognition of Constrained Control Chart Patterns
R. Haghighati and A. Hassan

III. Manufacturing Engineering

Towards the Integration of Mobile Augmented Reality within an Aluminium Process Fault Detection and Diagnosis System
A.M.N. Aini and A. Haslina

Effect of Cutting Parameters on Surface Roughness in Turning of Bone
P.Y.M.W. Ndaruohadi, S. Sharif, M.Y. Noordin and D. Kurniawan

Review on Methodology for Life Cycle Costing of Membrane System for Wastewater Filtration
N.S. Jiran, S. Mahmood, M.Z.M. Saman and M.Y. Noordin

Experiment Investigation of Hole Accuracy and Surface Roughness in Femur Bone Drilling Using Different Parameters
P.Y.M.W. Ndaruohadi, S. Sharif and D. Kurniawan

Determination of Parameters for Sustainability Assessment of Hollow Fiber Membrane Module Life Cycle
S. Mahmood, N.S. Jiran, M.Z.M. Saman and M.Y. Noordin

Effect of Peak Current on Material Removal Rate for Electrical Discharge Machining of Non-Conductive Al_2O_3 Ceramic
M.A. Moudood, A. Sabur, M.Y. Ali and I.H. Jaafar

Effects of On-Time on Microstructure and Corrosion Resistance of Pulse-Micro-Arc Oxidation Coatings Formed on Titanium Alloy
Y.S. Chen and Y.Y. Tsai

Offline Programming to Control Robot Manipulator in Virtual Kinematic Learning Tool
K.C. Yir, A. Haslina and E. Sundararajan

Texture Feature Analysis of Milled Components Using Vision System
D.M. Shivanna, S.D. Kavitha and M.B. Kiran

Autonomous Mobile Robot Platform for On-the-Road Navigation

Effect of Buffer Size Variation on Remanufacturing Environment
V.A. Pourghadim, M.Y. Noordin and K.Y. Wong

Tool-Life of Wiper and Standard Cutting Tool in Finish Turning of SAE 4140
A.J. Souza and G.C. Rosa

Comparative Analysis on Wiper and Standard Tools in Dry Finish Turning of Martensitic Stainless Steel AISI 420
G.C. Rosa, A.J. Souza and F.J. Lorini

Comparison of Different Scenarios Using Computer Simulation to Improve the Manufacturing System Productivity: Case Study
S.M. Zahrae, M. Hatami, J.M. Rohani, H. Mihan zadeh and M. Haghghi

Effect of Butt Joint on Mechanical Properties of Welded Low Carbon Steel
T.T.B. Wardoyo, S. Izman and D. Kurniawan

A Review on Intelligence STEP-NC Data Model and Function Blocks CNC Machining Protocol
S.B. Mohammed, A. Jameel and M. Minhat

Power Demand Calculations in Turning of Aluminum Alloy
R. Nur, M.Y. Noordin, S. Izman and D. Kurniawan

Parametric Control of Oxyacetylene Flame Profile
A.U. Alkali, T.L. Ginta and A.M. Abdul-Rani

Synthesis and Characterization of Polyaniline-Polypyrrole Composite
A. Abdolahi, E. Hamzah, S. Hashim and Z. Ibrahim

The Effect of Cutting Parameters on Power Consumption during Turning Nickel Based Alloy
R. Nur, M.Y. Noordin, S. Izman and D. Kurniawan

Estimation of Charge Mass for High Speed Forming of Circular Plates Using Energy Method
R. Alipour, S. Izman and M.N. Tamin
Examining the Effect of Various Vegetable Oil-Based Cutting Fluids on Surface Integrity in Drilling Steel - A Review
A.Z. Sultan, S. Sharif and D. Kurniawan

Sustainability Assessment Methodology for Concrete Manufacturing Process: A Fuzzy Inference System Approach
P. Rezvan, A.H. Azadnia, M.Y. Noordin and S.N. Seyedi

Experimental Investigation the Drill Bit Curve Radius & Chisel Point on Effect of Induced Damage in Drilling Woven GFRP
M.A. Hoseiny, R. Moghiseh-E, A. Alinaghizadeh, P. Soltani and V.M. Hachesoo

Theoretical Analysis of Velocity and Position Loop Behaviour of Nonlinear Cascade Feedforward Controller for Positioning of XY Table Ballscrew Drive System
L. Abdullah, Z. Jamaludin, M.R. Salleh, B. Abu Bakar, J. Jamaludin, T.H. Chiew and N.A. Rafan

Glycerol as Plasticizer for Waste Polystyrene Based Metal Injection Molding (MIM) Binder
N.N. Ismail, K.R. Jamaludin and N. Ahmad

An Application of Failure Mode and Effect Analysis to Cylinder Head during Dismantle of Remanufacturing Process: A Case Study
M.Y. Abu, K.R. Jamaludin, A.S. Abdul Sani, T.A. Abdullah and D.A. Wahab

Development of Multi-Criteria Decision Analysis Methodology to Determine Product End-of-Life Treatment Options
A. Ullah, M.Z.M. Saman and S. Mahmood

Investigation of Recast Layer of Non-Conductive Ceramic due to Micro-EDM
A.R. Mohamed, B. Asfana and M.Y. Ali

Influence of Process Parameters on Surface Finish in Customized Bone Implant Using Selective Laser Sintering
K.S. Lakshmi and G. Arumaikkannu

Manufacturing of MWNT Filled Carbon Fiber Reinforced Polypropylene with Gelatin
J.U. Roh and W.I. Lee

Cleaner Production Associated with Financial and Environmental Benefits: A Case Study on Automotive Industry
G.C.O. Neto, S.M. Souza and E.A. Baptista

Parametric Study of Powder Mixed Electrical Discharge Machining and Mathematical Modeling of SiSiC Using Copper Electrode
A.A. Aliyu, H. Musa and J.M. Rohani

Application of Mahalanobis-Taguchi System on Crankshaft as Remanufacturing Automotive Part: A Case Study
M.Y. Abu and K.R. Jamaludin

Effect of Cooling/Lubrication Using Cooled Air, MQL + Cooled Air, N₂ and CO₂ Gases on Tool Life and Surface Finish in Machining – A Review
A.E.I. Elshwain and N. Redzuan

Effects of Friction Modifier Additives on HDD Substrate Defects and Surface Topography during CMP
S. Sideoq and S. Izman

Effect of Manufacturing Process on Free Vibration of Foam-Core Sandwich Plate
B. Abdi, S. Azwan, A. Ayob, R.A. Rahman and M.Y. Yahya

Current Situation in Cleaning Process of Remanufacturing in Malaysia: A Case Study
M.Y. Abu, K.R. Jamaludin, A.S. Abdul Sani, T.A. Abdullah and D.A. Wahab

High-Speed Photographic Study of Chip Formation during End Milling of GFRP Composites
A.I. Azmi, R.J.T. Lin and D. Bhattacharyya

Design and Fabrication of Customised Scaffold for Femur Bone Using 3D Printing
V. Iraimudi, S.R. Begum, G. Arumaikkannu and R. Narayanan

The Influence of Braiding Angle Variation in Braided-Twisted Fiber Scaffold Based Poly L-Lactic Acid for Anterior Cruciate Ligament Reconstruction Application
Z. Mardina, N. Fitriana, R. Siswanto, O. Oktavina, N. Zahra, P. Widiyanti, D. Rudyarjo, E. Indarto and R. Langenati

Empirical Determination of Roughness Parameters Using Wiper Tool Inserts in Finish Turning of AISI 4140
M. Geier and A.J. Souza
Cutting Force and Temperature Variation in Bone Drilling - A Review
T.L. Ginta and B. Ariwahjoedi

Influence of Waste Rubber on the Properties and Microstructure of Injection Moulded M2 High Speed Steel
N.A. Wahab, M.A. Omar, N.A. Nordin, R. Sauti and M.D.K. Bahrin

Effect of Higher Peak Current and Pulse Duration on EWR of Copper Electrode when Electrical Discharge Machining (EDM) of Inconel 718
S. Ahmad and M.A. Lajis

Investigation of Process Performances and Cut Surface Characteristics in the Wire-EDMing of Silicon
J. Punturat, V. Tangwarodomnukun and C. Dumkum

Oil Spills Hazard and Sustainable Mitigation Approach: A Review
J. Idris, Z. Ahmad, G.D. Eyu and C.S. Chukwuekezie

Effects of Cutting Parameters on Hole Integrity when Drilling GFRP and HFRP Composites
M.A. Moinser, F. Ahmad and S. Sharif

Effect of Drill Point Angle on Surface Integrity when Drilling Titanium Alloy
M.N. Murad, S. Sharif, E.A. Rahim and Rival

Manufacturing Process of Blended Delta-Shaped Wing Model
S. Mat, I.S. Ishak, K. Zakaria and Z.A. Khan

TCP/IP-Based Control and Monitoring of Manufacturing System
M. Abrishamkar, M. Hussein, K. Zakaria and H. Maleki

Micro-Electrode Fabrication Process Using EDM
M. Hourmand and M.Y. Noordin

Effect of Electrospinning Parameters Setting towards Fiber Diameter
N.H.A. Ngadiman, M.Y. Noordin, A. Idris and D. Kurniawan
The Effect of Cutting Parameters on Power Consumption during Turning Nickel Based Alloy

Rusdi Nur1,2,a, M.Y. Noordin2,b, S. Izman2,c and D. Kurniawan2,d

1Politeknik Negeri Ujung Pandang, Makassar 90245, Indonesia
2Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
aar_rusdi_nur@yahoo.com, bnoordin@fkm.utm.my, cizman@fkm.utm.my, ddenni@utm.my

Keywords: Power Consumption, Cutting force, Nickel Alloy.

Abstract. Machining process should also consider environmental aspect, with power consumption as one of the criteria. Cutting parameters can be optimized to minimize power consumption. This paper takes a study on turning of nickel-based hastelloy under dry condition (no cutting fluid) which varies cutting speed (150, 200, and 250 m/min) and depth of cut (0.5, 1.0, and 1.5 mm). Power consumption of particular machining process at various cutting parameters was derived and calculated. It was found that minimum power consumption was shown when the turning process was performed at the lowest cutting speed and depth of cut.

Introduction

Manufacturers, in particular machining centers, would save money and become more sustainable if their power consumption is minimized. Towards this aim, the machining processes should gather information on the power consumption [1]. There various ways to measure power consumption during machining. It is interesting to note that two third of the power is consumed for operating motors and driving the cutting tools [2]. This power consumption is high during roughing and is considerably lower during finishing [3]. This means, setting of cutting parameters (which determine whether the machining is a roughing or finishing process), have direct influence to the power consumption.

Determining the power consumption of machining processes is quiet complex, since it should take into account all aspects involved in the process, the workpiece, the tool, and the operator. For this, one can use the approach introduced by previous works. Hanafi et al. estimated cutting parameters in turning of PEEK-CF30 using TiN tools under dry machining, to attain minimum power consumption and the best surface quality using Taguchi and grey relational method [4]. Another work was a study into the effects of cutting parameters and nose radius in turning of 7075 Al alloy SiC composite to minimize power consumption and maximize tool life [5].

This paper present an approach derived from previous study to calculate power consumption during the turning process of nickel-based Hastelloy without cutting fluid. Generally, the calculation of power consumption is derived from cutting force data of the machining process.

Evaluating Power Consumption

During a machining process, energy is used to drive components (e.g., CNC control unit, spindle, and feed axis) of the CNC machine tool to conduct a series of operations (e.g., set up, loading, cutting, automatic tool change). Previous studies showed that the power consumption is dynamic during machining processes. In turning, the power consumption profile can be divided into three parts: constant power, variable power, and peak power (Fig 1). Peak power is usually short and contributes only a small portion to the cumulated energy consumption; thus it can be ignored when calculating the total energy consumption. With consideration of these states, the power demand can generally be differentiated into a variable and a constant power [6].

It was reported that the energy required for the material removal processes can be quite small compared with the total energy for machining process [6]. It was further suggested that the energy footprint for primary processes involved in material fabrication is usually higher than that for
secondary shaping processes [7]. Notwithstanding this factor, for manufacturing companies, the raw material inputs are usually defined by the customer and the energy calculation should only focused on the secondary production processes, i.e. the machining.

The electrical power requirement, P, for machining can be calculated from equation as follow:

\[P = P_o + k \cdot \dot{v} \] \hspace{1cm} (1)

where \(P \) is the power consumed by machining process, \(P_o \) is the power consumed by all machine modules for a machine operating without loading, \(k \) is the specific energy requirement in cutting operations, and \(\dot{v} \) is the material removal rate (MRR).

As shown in Eq. 1, the energy requirement for machining process is dependent on power consumed and specific energy in cutting operations. Representative specific energy for machining different materials was published by Kalpakjian and Schmid [8]. The values to adapt depend on the combination of tooling and workpiece material used. From on Eq.1, the total power for machining can be divided into two, namely the idle power \((P_o) \) and the cutting power \((P_c) \). The idle power \((P_o) \) is the power needed or required for equipment features that support the machine (such as the power to start up the computer and fans, motors, and coolant pump). \(P_o \) can be estimated as 35% from total power capacity of lathe machine, considering it is common that the drive capacity of the spindle unit is overpowered (the maximum torque is two to three times higher what is necessary for the cutting process). The cutting power \((P_c) \) is the product of cutting force and cutting speed \[9,10\]. The equation for the cutting power \([\text{Watt}]\) is:

\[P_c = F_c \cdot V_c \] \hspace{1cm} (2)

where \(V_c \) is the cutting speed in m/min and \(F_c \) is the main cutting force in N. Based on Eq. 1 and Eq. 2, the total power consumption in turning can be stated as:

\[P_t = P_o + F_c \cdot V_c \] \hspace{1cm} (3)

Case Study

This paper uses data and results of an experimented by Khidhir and Mohamed [11]. The machining was performed using a OKUMA 2-axes lathe machine with 11 kW spindle motor and 6000 rpm of maximum speed. The cutting parameters are stated in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Details of cutting parameters [11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed (m/min)</td>
</tr>
<tr>
<td>Depth of cut (ap) (mm)</td>
</tr>
<tr>
<td>Feed rate (mm/rev)</td>
</tr>
<tr>
<td>Coolant</td>
</tr>
</tbody>
</table>
Material for experimental trials was nickel based alloy (Hastelloy C-276) round bar to ASTM B574-99a specification (Hynes international). The material was annealed at 1120°C (held 75 minutes) and water quenched. Its chemical composition were: 57% Ni, 1.62% Co, 15.44% Cr, 15.34% Mo, 5.43% Fe, 3.67% W, 0.41% V, 0.52% Mn, 0.004% C, <0.02% Si, 0.005% P and <0.01% S. The cutting tool was ceramic insert (Sandvik) with specifications: 1.2mm nose radius, -6° rake angle, and inclination angle was designated as SNGN 120412E (45° of approach angle, K).

Results and Discussion

Experimentation of turning on the nickel based alloy indicated that the power consumption tends to increase for higher depth of cut. The power consumption has a proportional relationship with the cutting force as shown in Eq. 2. This indication was caused by the value of cutting force that also increases with increasing feed rate [11]. This can be seen in Fig. 2 which shows that the power consumption is proportional to feed rate and cutting speed.

![Power consumption vs Cutting Speed](image)

Fig. 2 The graph of power consumption for different cutting speed at DOC 0.05, 0.10, 0.15 mm/rev

The power consumption as showed in Fig. 2 was evaluated based on the data of cutting force using Eq. 3. The increment of power consumption was influenced by the data of cutting force that increases for not only increased cutting speed but also increased feed rate. This result is in agreement with the experimental study on machining of AISI 1045 steel that concluded that the power consumption continuously increases with an increase in cutting speed [12]. Similar result was also obtained during turning GFRP composites that cutting power is directly proportional to the cutting speed because the cutting power is the product of cutting force and cutting speed [9]. It should be noted that although the power consumption is the lowest at the lowest cutting parameters setting, the corresponding material removal rate is also the lowest. Hence, further analysis to optimize the conflicting objectives could be needed. An approach is by design of experiments which is capable of doing similar optimization of cutting parameters for turning processes [13,14].

Conclusion

In this paper, the power consumption of machining nickel based alloy Hastelloy C-276 was evaluated based on cutting force when dry turning. It also presented an approach in evaluating power consumption during machining which was proven to be applicable for the particular turning process. Cutting speed (150, 200, and 250 m/min) and depth of cut (0.5, 1.0, and 1.5 mm) were the variables. The results show that minimum power consumption would be obtained at the lowest cutting parameters.
Acknowledgements

Financial supports from the Ministry of Higher Education, Malaysia and Universiti Teknologi Malaysia through Research University Grants (Nos. 02H15 and 05H27) are acknowledged. RN acknowledges the Government of South Sulawesi Province, Indonesia for providing scholarship.

References

Advanced Materials Research

Country: Switzerland - SIR Ranking of Switzerland
Subject Area and Category: Engineering (miscellaneous)
Publisher: Trans Tech Publications
Publication type: Book Series
ISSN: 16628985, 10226680
Coverage: 2005-2014 (cancelled)

Homepage

Join the conversation about this journal

Quartiles

SJR

Citations per document
The two years line is equivalent to journal impact factor™ (Thomson Reuters) metric.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cites / Doc. (4 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>0.000</td>
</tr>
<tr>
<td>2006</td>
<td>0.343</td>
</tr>
<tr>
<td>2007</td>
<td>0.225</td>
</tr>
<tr>
<td>2008</td>
<td>0.280</td>
</tr>
<tr>
<td>2009</td>
<td>0.218</td>
</tr>
<tr>
<td>2010</td>
<td>0.224</td>
</tr>
<tr>
<td>2011</td>
<td>0.216</td>
</tr>
<tr>
<td>2012</td>
<td>0.139</td>
</tr>
<tr>
<td>2013</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Total Cites Self-Cites

Evolution of the total number of citations and journal’s self-citations received by a journal’s published documents during the three previous years.

Journal Self-citation is defined as the number of citations from a journal citing article to articles published by the same journal.

<table>
<thead>
<tr>
<th>Year</th>
<th>SlfCit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>0</td>
</tr>
</tbody>
</table>

External Cites per Doc

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal’s published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>

Citable documents Non-citable documents

Ratio of a journal’s articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>

Cited documents Uncited documents

Ratio of a journal’s items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>77</td>
</tr>
<tr>
<td>2007</td>
<td>342</td>
</tr>
<tr>
<td>2008</td>
<td>989</td>
</tr>
</tbody>
</table>

% International Collaboration

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal’s documents signed by researchers from more than one country; that is including more than one country address.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>6.93</td>
</tr>
<tr>
<td>2006</td>
<td>790</td>
</tr>
</tbody>
</table>

Leave a comment

Name
The effect of cutting parameters on power consumption during turning nickel based alloy
DOI: 10.4028/www.scientific.net/AMR.845.799

Nur, R. a, Noordin, M.Y. b, Izman, S. b, Kurniawan, D. b

Abstract
Machining process should also consider environmental aspect, with power consumption as one of the criteria. Cutting parameters can be optimized to minimize power consumption. This paper takes a study on turning of nickel-based hastelloy under dry condition (no cutting fluid) which varies cutting speed (150, 200, and 250 m/min) and depth of cut (0.5, 1.0, and 1.5 mm). Power consumption of particular machining process at various cutting parameters was derived and calculated. It was found that minimum power consumption was shown when the turning process was performed at the lowest cutting speed and depth of cut. © (2014) Trans Tech Publications, Switzerland.

Author Keywords
Cutting force; Nickel alloy; Power consumption

Index Keywords
Cutting forces, Cutting parameters, Cutting speed, Dry condition, Environmental aspects, Machining Process, Nickel based alloy, Turning process; Cutting, Cutting fluids, Electric power supplies to apparatus, Electric power utilization, Industrial engineering, Industrial research, Machining centers, Nickel, Nickel alloys; Turning

Correspondence Address
Politeknik Negeri Ujung Pandang, Makassar 90245, Indonesia

ISSN: 10226680
ISBN: 9783037859360
Language of Original Document: English
2-s2.0-84891530535
Document Type: Conference Paper
Publication Stage: Final
Source: Scopus

Copyright © 2019 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.
Title: The Effect of Cutting Parameters on Power Consumption during Turning Nickel Based Alloy

Abstract: Machining process should also consider environmental aspect, with power consumption as one of the criteria. Cutting parameters can be optimized to minimize power consumption. This paper takes a study on turning of nickel-based hastelloy under dry condition (no cutting fluid) which varies cutting speed (150, 200, and 250 m/min) and depth of cut (0.5, 1.0, and 1.5 mm). Power consumption of particular machining process at various cutting parameters was derived and calculated. It was found that minimum power consumption was shown when the turning process was performed at the lowest cutting speed and depth of cut.

ISSN: 1022-6680
ISBN: 978-3-03785-936-0