Editor-in-Chief

Prof. nzw. dr hab. inz. Lech M. Grzesiak, Warsaw University of Technology, Poland

Managing Editor

Assoc. Prof. Dr. Tole Sutikno, Universitas Ahmad Dahlan, Indonesia
Dr. Auzani Jidin, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia

Associate Editors

Prof. Dr. Faycal Djeffal, University of Batna, Batna, Algeria
Prof. Dr. Geetam Singh Tomar, University of Kent, United Kingdom
Prof. Dr. Govindaraj Thangavel, Muthayammal Engineering College, India
Prof. Dr. Kewen Zhao, Qingzhou University, China
Prof. Dr. Sayed M. El-Rabaie, Minufiya University, Egypt
Prof. Dr. Tarek Bouktir, Ferhat Abbas University, Setif, Algeria
Prof. Dr. Ahmad Siaufi Samosir, Universitas Lampung (UNILA), Indonesia
Prof. Abdel Ghani Aissaoui, University of Bechar, Algeria, Algeria
Assoc. Prof. Dr. Angela Amphawan, Universiti Utara Malaysia, Massachusetts Institute of Technology, Malaysia
Assoc. Prof. Dr. Farrok Attarzadeh, Ph.D., University of Houston, United States
Assoc. Prof. Dr. Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Assoc. Prof. Dr. Mohamad Farid, Universitas Diponogoro (UNDIP), Indonesia
Assoc. Prof. Dr. M L Dennis Wong, Swinburne University of Technology Sarawak Campus, Malaysia
Assoc. Prof. Dr. Naci Genc, Yuzuncu Yil University, Turkey
Assoc. Prof. Dr. Wudhichai Assawinchaichote, King Mongkut’s University of Technology Thonburi, Thailand
Asst. Prof. Dr. Luca Cassano, Politecnico di Milano, Italy
Dr. Deris Stiawan, C|EH, C|HFI, Universitas Sriwijaya, Indonesia
Dr. Junjie Lu, Broadcom Corp., United States
Dr. MehrdadAhmad Kamarposhti, Assistant Professor, Department of Electrical Engineering, Jouybar Branch, Islamic Azad University, Iran, Iran, Islamic Republic of
Dr. Mohktar Beljehem, University of Ottawa, Canada
Dr. Munawar A Riaawi, Universiti Teknologi Malaysia, Malaysia
Dr. Nidhal Bouaynaya, University of Arkansas at Little Rock, Arkansas, United States
Dr. Renjie Huang, Washington State University, United States
Dr. Ranjit Kumar Barai, Jadavpur University, India
Dr. Shadi A Alboon, Yamouk University, Jordan
Dr. Vicente Garcia Diaz, University of Oviedo, Spain
Dr. Yin Liu, Symantec Core Research Lab, United States
Dr. Yudong Zhang, Columbia University, United States
Dr. Zheng Xu, IBM Corporation, United States

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
International Journal of Electrical and Computer Engineering

Country: Indonesia

Subject Area and Category:
- Computer Science
- Computer Science (miscellaneous)
- Engineering
- Electrical and Electronic Engineering

Publisher: Institute of Advanced Engineering and Science (IAES)

Publication type: Journals

ISSN: 20888708

Coverage: 2014-ongoing

Quartiles:
- Computer Science (miscellaneous): Q2 in 2015, Q2 in 2016
- Electrical and Electronic Engineering: Q4 in 2015, Q2 in 2016

SJR:
- 0.14 in 2015
- 0.21 in 2016

Citations per document:
- 0.14 to 0.35

http://www.scimagojr.com/journalsearch.php?q=21100373959&tip=sid&exact=no
Cites per document

- **2015**: 0.440
- **2016**: 1.211

Cites / Doc. (4 years)

- **2015**: 0.440
- **2016**: 1.211

Cites / Doc. (3 years)

- **2015**: 0.440
- **2016**: 1.211

Cites / Doc. (2 years)

- **2015**: 0.440
- **2016**: 1.211

Total Cites

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>2</td>
</tr>
</tbody>
</table>

Self-Cites

- **2015**: 25
- **2016**: 1175

External Cites per Doc

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
</tr>
</tbody>
</table>

Evolution of the total number of citations and journal’s self-citations received by a journal’s published documents during the three previous years.

Journal Self-citation is defined as the number of citation from a journal citing article to articles published by the same journal.

Citable documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>4</td>
</tr>
</tbody>
</table>

Non-citable documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>3</td>
</tr>
</tbody>
</table>

Cited documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>2</td>
</tr>
</tbody>
</table>

Uncited documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>2</td>
</tr>
</tbody>
</table>

International Collaboration

- **2015**: 14.69
- **2016**: 11.75

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal’s documents signed by researchers from more than one country; that is including more than one country address.

Not every article in a journal is considered primary research and therefore “citable”, this chart shows the ratio of a journal’s articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.

Ratio of a journal’s items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.

International Journal of Electrical and Computer Engineering

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2009-2015</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJR</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Cites per doc</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Total cites</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

Show this widget in your own website

Just copy the code below and paste within your html code:

```html
<a href="http://www.scimagojr.com">Show this widget in your own website</a>
```
[IJECE] Submission Acknowledgement

2 messages

To: Makmur Saini <makmur.saini@fkegraduate.utm.my>

Dear Makmur Saini,

Thank you for submitting the manuscript, "Algorithm for Fault Location and Classification on Parallel Transmission Line Using Wavelet Based on Clarke’s Transformation" to International Journal of Electrical and Computer Engineering (IJECE). With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Manuscript URL: http://iaesjournal.com/index.php/IJECE/author/submission/16956
Username: makmur

If you have any questions, please contact us. Please refer to your paper ID whenever you communicate with our Editorial Office in the future. Your paper ID is latest number at Manuscript URL.

Thank you for considering this journal as a venue for your work.

Best Regards,
Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE)

Our event in 2017

Dear Researchers,

2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2017) will be held on September 19-21, 2017 in Yogyakarta, Indonesia. This conference is hosted by Universitas Ahmad Dahlan and is jointly organized with Universitas Gadjah Mada, Universitas Diponegoro, Universitas Sriwijaya, Universitas Islam Sultan Agung, Universitas Muhammadiyah Malang, Universitas Budi Luhur and IAES Indonesia.

The Conference is aimed to bring researchers, academicians, scientists, students, engineers and practitioners together to participate and present their latest research finding, developments and applications related to the various aspects of electrical, electronics, power electronics, instrumentation, control, robotics, computer & telecommunication engineering, signal, image & video processing, soft computing, computer science and informatics.

The EECSI 2017 has been approved by IEEE for Technical co-sponsorship with conference record number #41583 (https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=41583).

All accepted, registered and presented papers will be submitted to IEEE Xplore® Digital Library. All uploaded papers in IEEE Xplore will be normally included in Scopus SciVerse Database.

Paper Submission Link: https://edas.info/index.php?c=23564

Important Dates
Submission

Authors: Makmur Saini, Abdullah Asuhaimi Mohd Zin, Mohd Wazir Mustafa, Ahmad Rizal Sultan, Rusdi Nur
Title: Algorithm for Fault Location and Classification on Parallel Transmission Line Using Wavelet Based on Clarke’s Transformation
Original file: None
Supp. files: None
Submitter: Makmur Saini
Date submitted: December 1, 2017 - 03:00 AM
Section: Electrical_Power_Engineering
Editor: Mehrdad Ahmadi Kamarposhti (Review), Tarek Bouktir (Review), Ahmad Saudi Samosir (Review), Govindaraj Thangavel (Review), Sanjay Warkad (Review)

Author comments: I hope that paper can be published in IJACE

Status
Status: Archived
Initiated: 2017-12-25
Last modified: 2017-12-25

Submission Metadata

EDIT METADATA

Authors
Name: Makmur Saini [https://orcid.org/0000-0002-5521-3180]
URL: https://orcid.org/0000-0002-5521-3180
Affiliation: Politeknik Negeri Ujung Pandang
Country: Indonesia
Bio Statement: Received his B. Eng. in Electrical Engineering in 1987 from Hasanuddin University, M.Eng Electrical Power in 1993 from Institut Teknologi Bandung (ITB), Indonesia and Ph.D Power System in 2015 from Universiti Teknologi Malaysia. He is currently pursuing his Senior Lecture state polytecnic ujung pandang, His research interests include power system protection, power system stability, transmission and distribution, high voltage and renewable energy application. MY RESEARCH : Fault Detection , Location and Classification Transmission Overhead Line using Artificial Neural Network and Wavelet Transformation Based on Clarke’s Transformation

Principal contact for editorial correspondence.
Name: Abdullah Asuhaimi Mohd Zin [https://orcid.org/0000-0003-1057-316X]
Affiliation: Universiti Teknologi Malaysia
Country: Malaysia
Bio Statement: received the B.Sc. degree from Gadjah Mada University, Indonesia, in 1976, the M.Sc. degree from University of Strathclyde, Strathclyde, U.K. in 1981, and the Ph.D. degree from the University of Manchester Institute of Science and Technology, Manchester, U.K., in 1988. Currently, he is a Professor Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru. His research interests include power system protection, application of neural network in power system, arcing fault in underground cables, power quality and dynamic equivalent of power systems. Dr. Mohd Zin is a corporate member of The Institution of Engineers, Malaysia (IEM) and a member of the Institute of Electrical Engineers (U.K.). He is a registered Professional Engineer (P. Eng.) in Malaysia and Chartered Engineer (C.Eng.) in the United Kingdom

Name: Mohd Wazir Mustafa [https://orcid.org/0000-0003-0817-5648]
Affiliation: Universiti Teknologi Malaysia
Country: Malaysia
Bio Statement: received his B. Eng Degree (1988), M. Sc. (1993) and PhD (1997) from university of Strathclyde. He is currently an Associate Professor and Deputy Dean Graduate Studies and Research at Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. He research interest includes power system stability, FACTS and power system distribution automation. He is a member of IEEE

Name: Ahmad Rizal Sultan [https://orcid.org/0000-0002-7172-9761]
Affiliation: Politeknik Negei Ujung Pandang
Country: Indonesia
Bio Statement: received the B.Sc. degree in 1999, the M.Eng Electrical 2006 from Hasanuddin University; Indonesia. Currently, he is an Associate Professor Engineering Department of Electrical Engineering, Politeknik Negeri Ujung Pandang, Makassar.
Algorithm for Fault Location and Classification on Parallel Transmission Line using Wavelet based on Clarke’s Transformation

Received his B. Eng. in Electrical Engineering in 1987 from Hasanuddin University, M.Eng Electrical Power in 1993 from Insitut Teknologi Bandung (ITB), Indonesia and Ph.D Power System in 2015 from Universiti Teknologi Malaysia, He is currently pursuing his Senior Lecture state polytecnic ujung pandang , His research interests include power system protection, power system stability, transmission and distribution, high voltage and renewable energy application. MY RESEARCH : Fault Detection , Location and Classification Transmission Overhead Line using Artificial Neural Network and Wavelet Transformation Based on Clarke's Transformation

received the B.Sc. degree from Gadjah Mada University, Indonesia, in 1976, the M.Sc. degree from University of Strathclyde, Strathclyde, U.K. in 1981, and the Ph.D. degree from the University of Manchester Institute of Science and Technology, Manchester, U.K., in 1988. Currently, he is a Professor Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru. His research interests include power system protection, application of neural network in power system, arcing fault in underground cables, power quality and dynamic equivalent of power systems. Dr. Mohd Zin is a corporate member of The Institution of Engineers, Malaysia (IEM) and a member of the Institute of Electrical Engineers (U.K.). He is a registered Professional Engineer (P. Eng.) in Malaysia and Chartered Engineer (C.Eng.) in the United Kingdom

received his B. Eng Degree (1988), M. Sc. (1993) and PhD (1997) from university of Strathclyde. He is currently an Associate Professor and Deputy Dean Graduate Studies and Research at Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. He research interest includes power system stability, FACTS and power system distribution automation. He is a member of IEEE.
April 2018

Table of Contents

Web server-based distributed machine socialization system
Changsu Kim, Hankil Kim, Jongwon Lee, Hoekyung Jung
Total views: 495 times
PDF
631-637

Automatic Segmentation of Brachial Artery based on Fuzzy C-Means Pixel Clustering from Ultrasound Images
Joonsung Park, Doo Heon Song, Hosung Nho, Hyun-Min Choi, Kyung-Ae Kim, Hyun Jun Park, Kwang Baek Kim
Total views: 183 times
PDF
638-643

From Agasa Cristie to Group Image Play - Analysis of Horror Survival Game Panic Room: Escaping from the Den on Emotional Elements Development
Doo Heon Song, Hae Kyung Rhe, Ji-eun Kim, Jong Hee Lee
Total views: 41 times
PDF
644-650

Body information analysis based personal exercise management system
Jongwon Lee, Hyunju Lee, Donggyun Yu, Hoekyung Jung
Total views: 61 times
PDF
651-657

Utilizing ECG Waveform Features as New Biometric Authentication Method
Ahmed Younes Shdefat, Moon-Il Joo, Sung-Hoon Choi, Hee-Cheol Kim
Total views: 135 times
PDF
658-663

Intelligent Automatic Extraction of Canine Cataract Object with Dynamic Controlled Fuzzy C-Means based Quantization
Kwang Baek Kim, Doo Heon Song
Total views: 46 times
PDF
666-672

Centeral Electric Field and Threshold Voltage in Accumulation-mode Junctionless Cylindrical Surrounding Gate MOSFET
Hakke Jung
Total views: 95 times
PDF
673-679

Model to Evaluate the Performance of Building Integrated Photovoltaic Systems using Matlab/Simulink
Julian Andres Camacho, Andres Julian Aristizabal
Total views: 106 times
PDF
680-688

Performance Enhancement in Active Power Filter (APF) by FPGA Implementation
Shamala N, C. Lakshminarayana
Total views: 100 times
PDF
689-698

Algorithm for Fault Location and Classification on Parallel Transmission Line using Wavelet based on Clarke’s Transformation
Makmur Saini, A. A. Mohd Zin, M. W. Mustafa, Ahmad Rizal Sultan, Rusdi Nur
Total views: 488 times
PDF
699-710

Maximum power extraction method for a doubly-fed induction generator wind turbine
Dinh Chung Phan, Trung Hieu Trinh
Total views: 82 times
PDF
711-722

Analysis of Inductance Gradient and Current Density Distribution Over Different Cross-section of Rails
M. N. Saravana Kumar, R. Murugan
Total views: 53 times
PDF
723-729

Design of Hybrid Solar Wind Energy System in a Microgrid with MPPT Techniques
D. Chinnakullay Reddy, S. Satya Narayana, V. Ganesh
Total views: 95 times
PDF
730-740

Review of under Frequency Load Shedding Program of Kosovo Power System based on ENTSO-E Requirements
Gazmend Kabashi, Skender Kabashi
Total views: 83 times
PDF
741-748

A Comprehensive Analysis of Partial Shading Effect on Output Parameters of a Grid-connected PV System
H. Rahimi Mirazizi, M. A. Shafiyi
Total views: 67 times
PDF
749-762

A Novel Three Phase Multilevel Inverter with Sineol Dc Link For Induction Motor Drive Applications
Adireddy Ramesh, O. Chandra Sekhar, M. Siva Kumar
Total views: 87 times
PDF
763-770
Algorithm for Fault Location and Classification on Parallel Transmission Line using Wavelet based on Clarke’s Transformation

Makmur Saini¹, A. A. Mohd Zin², M. W. Mustafa³, A. R. Sultan⁴, Rusdi Nur⁵
¹²Department of Mechanical Engineering, Politeknik Negeri Ujung Pandang, Indonesia
²³Department of Electrical Engineering, Universiti Teknologi Malaysia, Malaysia
⁴Department of Electrical Engineering, Politeknik Negeri Ujung Pandang, Indonesia

Article Info

Article history:
Received Nov 2, 2017
Revised Mar 10, 2018
Accepted Mar 16, 2018

Keyword:
Clarke’s transformation
Fault detection
Fault location
Transmission parallel line
Wavelet transformation

ABSTRACT

This paper proposed a new algorithm for fault location and classification using wavelet based on Clarke’s transformation to obtain the fault current. This novel method of fault current approach is studied by comparing the use of the glide path of the fault voltage. The current alpha and beta (Current Mode) were used to transform the signal using discrete wavelet transform (DWT). The fault location was determined by using the Clarke’s transformation, and then turned into a wavelet, which was very precise and thorough. The most accurate was the mother wavelet Db4 which had the fastest time and smallest error detection when compared with the other wavelet mothers. In this study, the Clarke’s transformation is also compared with the Karenbauer’s, which has produced results with similar error percentage. The simulation results using PSCAD / EMTDC software showed that the proposed algorithm could distinguish internal and external faults to get the current signal in the transformation of a signal fault.

Corresponding Author:
Makmur Saini,
Departement of Mechanical Engineering,
Politeknik Negeri Ujung Pandang,
Jalan Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia.
Email: makmur.saini@poliupg.ac.id

1. INTRODUCTION

Currently, the parallel transmission networks are widely used in the electrical power systems. Therefore, a fast and reliable protection is very much needed in such aspects as rapid fault detection and accurate estimation of the location fault will reduce errors, and assist in the maintenance and restoration services to improve the continuity and reliability of electric supply. Therefore, parallel transmission lines require more special consideration in comparison with a single transmission line, due to the effect of mutual coupling on the parallel transmission line. It also must conform to the standard IEEE.STD.114 2004 [1]. One main advantage of parallel transmission is the availability of the transmission lines during and after the fault.

Fault location problems in the parallel transmission lines have been widely researched. Many diagnostic approaches have been proposed in the literature, including fault location based on the amount of electricity, which includes one-terminal method [2], [3], two-terminal method [4], [5], traveling wave analysis method [6], [7], resistance measurement method [8], and the determination of fault location estimation using wavelet transform [9].

This paper proposed discrete wavelet transformation using the Clarke’s transformation to determine the fault location estimation and classification on the parallel transmission lines. This study presents a different approach, which is based on the Clarke’s transformation known as alpha-beta transformation, which

is a transformation of a three-phase system into a two-phase system [10], [11], where after the result, the Clarke’s transformation is then transformed into discrete wavelet transform.

Wavelet transform is an effective tool in analyzing the transient current and signal associated with faults, both in frequency and in the time-domain [12], [13] and is ideal for dealing with non-stationary signal. This can improve the accuracy, reliability of the detection and classification of power quality disturbance [14], and features can be applied to determine the fault location estimation [15].

The proposed approach combines the decomposition of electromagnetic wave propagation modes, using the Clarke’s transformation of signal processing, given by the discrete wavelet transformation based on the maximum signal amplitude (WTC) to determine the intrusion time. This work made extensive use of the simulation software PSCAD/EMTDC [16] which resulted in the fault of the simulation of the transient signal transmission line parallel to the number of data points (10^5). For one kind of fault, these data were then transferred to MATLAB with the help of Clarke’s transformation to convert the three-phase signal into alpha and beta signals. The signals were then transformed into several mother wavelets [17] such as Db4, Sym4, Coif4 and Db8 which were manipulated for comparison in terms of time and the distance estimation fault in the parallel transmission line.

2. BASIC PRINCIPLE OF CLARKE’S AND WAVELET TRANSFORMATION

2.1. Clarke’s Transformation

Clarke’s Transformation (αβ0) is a useful analytical approach to complement symmetry components (0, 1, 2). Clarke’s transformation can overcome some symmetry component drawbacks such as the calculation of the circuit transient phenomena. Clarke’s Transformation (αβ0) is the transformation method that contains the elements of a 3 x 3 matrix, containing matrix element in the form of real, whereas the symmetry component contains matrix components in the form of real and complex numbers. A three-phase current which has a digital representation is assumed to have the form [18], [19]. Therefore, the above components can be formed into a matrix [20]

\[i_{\text{mode}} = i_{\alpha\beta\delta} = C \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} i_A(n) \\ i_B(n) \\ i_C(n) \end{bmatrix} \]

(1)

where C is the well-known transformation introduced by Edith Clarke [21].

2.2. Fault Characterization in Clarke’s Transformation

2.2.1. Single Line of Ground Fault Phase A to G

A suppose for a line to ground fault (AG), assuming the grounding resistance is zero, then the instantaneous boundary conditions will be:

\[I_B = I_C = 0 \text{ and } V_A = 0 \]

(2)

Then, the boundary condition instantaneous will be:

\[\begin{bmatrix} I_A \\ I_B \\ I_0 \\ I_Y \end{bmatrix} = \begin{bmatrix} -2/3 I_A \\ 0 \\ -1/3 I_A \\ -2/3 I_A \end{bmatrix} \]

(3)

2.2.2. Line to Line Fault in Phase A-B

A suppose for the line to line fault (AB), assuming the grounding resistance is zero, then the instantaneous boundary conditions will be:

\[I_C = 0 \text{ , } I_A = -I_B \text{ and } V_A = V_B \]

(4)

Then, the boundary condition instantaneous will be:
Algorithm for Fault Location and Classification on Parallel Transmission Line (Makmur Saini)

\[
\begin{bmatrix}
I_a \\
I_b \\
I_0 \\
I_y
\end{bmatrix} =
\begin{bmatrix}
I_a \\
-1/3 \sqrt{3} I_b \\
0 \\
-I_a - 1/3 \sqrt{3} I_b
\end{bmatrix}
\]
(5)

2.2.3. Line to Line to ground Fault in Phase AB to G

A suppose line to line to ground fault (ABG), assuming the grounding resistance is zero, then the instantaneous boundary conditions will be:

\[
I_c = 0 \text{, } I_A = I_B \text{ and } V_A = V_B = 0
\]
(6)

Then, the boundary condition instantaneous will be:

\[
\begin{bmatrix}
I_a \\
I_b \\
I_0 \\
I_y
\end{bmatrix} =
\begin{bmatrix}
2/3 I_a - 1/3 I_b \\
1/3 \sqrt{3} I_b \\
1/3 I_a + 1/3 I_b \\
-2/3 I_a + 1/3 I_b + 1/3 \sqrt{3} I_b
\end{bmatrix}
\]
(7)

2.2.4. Three Phase Fault in Phase ABC

A suppose for three phase fault (ABC), assuming the grounding resistance is zero, then the instantaneous boundary conditions will be:

\[
I_a + I_b + I_c = 0 \text{ and } V_a + V_b + V_c = 0
\]
(8)

Then, the boundary condition instantaneous will be:

\[
\begin{bmatrix}
I_a \\
I_b \\
I_0 \\
I_y
\end{bmatrix} =
\begin{bmatrix}
\frac{2}{3} I_a - \frac{1}{3} I_b - \frac{1}{3} I_c \\
\frac{1}{3} \sqrt{3} I_b - \frac{1}{3} \sqrt{3} I_c \\
\frac{1}{3} I_a + \frac{1}{3} I_b + \frac{1}{3} \sqrt{3} I_c
\end{bmatrix}
\]
(9)

Based on the above analysis, the characteristics of various faults based on Clarke’s transformation α- Modal, β- Modal and modal γ can be proposed.

2.3. Wavelet Transformation

Wavelet transformation is the decomposition of a signal by a function $\varphi_{a,t}(t)$ which is deleted and translated by the so-called mother wavelet. The function of the mother wavelet can be written as follows [22], [23]:

$$\varphi_{a,t}(t) = \frac{1}{\sqrt{a}} \varphi \left(\frac{t-b}{a} \right)$$
(10)

Where a is the dilation parameter ($a \in \text{Real}$) and b is a translation parameter ($b \in \text{Real}$), parameter a indicates the width of the wavelet curve, when the value of a wider magnified wavelet curve is diminished as the curve gets smaller, while the wavelet parameter curve b shows the localization of wavelet centered at $t = b$. The detection of the discrete wavelet transformed (DWT) fault is required so that the equation becomes [24], [25]

\[
\varphi_{a,b}(t) = 2^{j/2} \varphi \left(2^j (a - b) \right), j, k \in \mathbb{Z}
\]
(11)

Variables j and k are integers that scale the shifts of the mother wavelet function, to produce types of mother wavelet such as Sym and Haar wavelets. The width of a wavelet is shown by the scale a, and the position is indicated by the wavelet scale b.
Discrete Wavelet Transformations (DWT) are methods used to decompose the input signal, and the signal is analyzed by giving treatment to the wavelet coefficients. The decomposition process involves two filters, which are low-pass filter and a high-pass filter [26]. This is achieved by successive high pass and low pass filtering of the time domain signal and is defined by the following equation:

\[
\delta_{\text{high}} [k] = \sum_n x[n]. g[2k - n] \\
\delta_{\text{low}} [k] = \sum_n x[n]. h[2k - n]
\]

(12) (13)

where \(\delta_{\text{high}} [k] \) = output high-pass filter and \(\delta_{\text{low}} [k] \) = output low-pass filter.

The signal is first passed through the high-pass filter and low pass filter, and then half of each output is taken as sampling, down through the sampling operation, the signal of desired frequency component can be obtained from the recurring decompositions as shown by Figure 1 [27].

![Figure 1. The process decomposition of discrete wavelet transform](image)

This is called a decomposition first level process in the frequency range of 250-500 kHz. The output from the low-pass filter is used as the input of the next decomposition second level, with a frequency range of 125-250 kHz. This process is repeated again until it reaches the third level of decomposition with a frequency of 62.5-125 kHz, and so forth, according to the level desired. In this study, it is chosen to reach level 4, with a frequency range of 31.25-62.5 kHz and a level 8 with frequency range of 7.8125-15.625 kHz [28].

The combination of the output from the high-pass filter and low-pass filter output is called Coefficient Wavelet transformed (CWT), which contains information on the results that have been compressed and transformed. In this study, the high pass filter and low-pass filter are coupled and becoming a Quadrature Mirror Filter (QMF), in which the couples meet the following [29] equation:

\[
h[n] = (-1)^n g [L + 1 - n] \]

(14)

where \(h[n] \) = high-pass filter, \(g[n] \) = low-pass filter, \(L \) = length of each filter. Successful to the down sampling operation that removes redundant information signal, wavelet transform has become one of the most reliable and accurate composition methods [30].

3. THE PROPOSED ALGORITHM

In this study, the simulations were performed using PSCAD, and the simulation results were obtained from the fault current signal.

The steps performed in this study were:

- Finding the input to the Clarke’s transformation and wavelet transform. The signal flow of PSCAD was then converted into m. files (*. M) and then converted into mat. Files (*.mat) with a sampling rate of \((10^5)\) and frequency dependent of 0.5 Hz-1 MHz.
b. Determining the data stream interference, where the signal was transformed by using the Clarke’s transformation to convert the transient signals into the basic current mode signal in using Equation (1).

c. Transforming the mode current signals again by using DWT and WTC, which were the generated coefficients, and then squared to be \((WTC)^2\) in order to obtain the maximum signal amplitude to determine the time of the interruption [31], [32].

d. Processing the ground mode and aerial mode and \((WTC)^2\) using the Bewley Lattice diagram [32], [33] of the initial wave to determine the fault location and detection.

e. Adding the magnitude of the current gamma to make the fault classification algorithm which then became modal \(I_p\) that can be proposed. While the magnitude of the current gamma of each different types of fault can be seen in Table 1.

\[I_y = -\frac{2}{3} I_a + \frac{1}{3} (1 + \sqrt{3}) I_b + \frac{1}{3}(1 - \sqrt{3}) I_c \] (15)

f. Determining whether the internal fault in both Circuit 1 or Circuit 2 and external fault using the following equation:

If \(\left|\frac{I_{a1}}{I_{a2}}\right| > 1\) or \(\left|\frac{I_{b1}}{I_{b2}}\right| > 1\) Fault Internal Circuit 1

(16)

If \(\left|\frac{I_{a2}}{I_{a1}}\right| > 1\) or \(\left|\frac{I_{b2}}{I_{b1}}\right| > 1\) Fault Internal Circuit 2

(17)

If \(\left|\frac{I_{a1}}{I_{a2}}\right| = 1\) or \(\left|\frac{I_{b1}}{I_{b2}}\right| = 1\) Fault External

(18)

g. The protection technique should be able to classify the faulted phase for single-phase-to-ground faults. In the case of single-phase-to-ground faults, two of the modal components that include the faulted phase should have almost the same amplitude and the other modal component should be zero, as follows:

\[\left|\frac{I_{a1}}{I_y}\right| - 1 < \varepsilon \Rightarrow AG \text{ fault} \] (19)

\[\left|\frac{I_{a1}+I_b}{I_y}\right| - 1 < \varepsilon \Rightarrow BG \text{ fault} \] (20)

\[\left|\frac{I_{a1}+I_c}{I_y}\right| - 1 < \varepsilon \Rightarrow CG \text{ fault} \] (21)

The algorithm will continue to determine the faulted phases involved in a multiple-phase fault. In the case of line to line faults, the criteria are as given in (22)-(24):

\[\left|I_a\right| + \left|I_b\right| - \left|I_y\right| < \sigma \Rightarrow AB \text{ fault} \] (22)

\[\left|I_b\right| + \left|I_c\right| - \left|I_a\right| < \sigma \Rightarrow AC \text{ fault} \] (23)

\[\left|I_c\right| - \left|I_y\right| < \sigma \Rightarrow BC \text{ fault} \] (24)

In the case of double line to ground faults, the criteria are as given in (25)-(27):

\[\left|I_y\right| - (\left|I_a\right| + \left|I_b\right|) < \delta \Rightarrow ABG \text{ fault} \] (25)

\[\left|\left(I_a\right| + \left|I_c\right|) - \left|I_y\right| + \left|I_b\right|) < \delta \Rightarrow ACG \text{ fault} \] (26)

\[\left|\left(I_y\right| + \left|I_c\right|) - (\left|I_a\right| + \left|I_b\right|) < \delta \Rightarrow BCG \text{ fault} \] (27)

h. Determining the fault Classification where the fault classification was divided into 2 categories
ground and unground. The current approach had zero given threshold or less equal to zero than the
disruption of unground fault, otherwise if the current I_g is greater than the specified threshold limit,
it would be the ground fault.

The unground fault was the line to line fault, while the threshold limit was given for termination
criteria $\sigma = 0.02$, while the ground was divided into 2, which were line to ground fault with the given
threshold $\varepsilon = 0.03$ and the line to line to ground fault with the given threshold $\delta = 0.05$ for the termination
criteria [34], as shown in Figure 2 that illustrates the proposed fault-type classification algorithm that uses the
modal components of the current signals.

4. SIMULATION RESULTS AND DISCUSSIONS

The system was connected with the sources at each end, as shown in Figure 2. This system was
simulated using PSCAD/EMTD. For the case study, the simulation was modelled on a 230 kV double circuit
transmission line, which was 200 km in length.

![Figure 2. One line diagram of the simulated transmission system](image)

Transmission data:
Sequence Impedance ohm/km.
Transmission Line $Z_l = Z_2 = 0.03574 + j 0.5776 Z_0 = 0.36315 + j 1.32.647$
Fault Starting = 0.22 second Duration in fault = 0.15 Second
Fault resistance (R_f) = 0.001, 25, 50, 75 and 100 ohm
Fault Inception Angle = 0, 15, 30, 45, 60, 90, 120 and 150 degree
Source A and B $Z_l = Z_2 = Z_0 = 9.1859 + j 52.093$ Ohm
Type Conductor = Chukar, diameter = 1.602 inch,
$D_s = 0.0524$ ft = 0.0162763 m

The results of the calculations took into account the position of the tower and distance between the
conductors. The conductor types used for this simulation were obtained using the propagation
velocity = $\frac{1}{\sqrt{\mu\varepsilon}} = 299863.4379$ km/second.

4.1. Internal Fault

Table 1 shows the results of various internal fault variations with fault resistance = 0.001 Ohm and
the fault inception angle of 0 degrees at various distances of errors. The biggest fault currentoccurred on the
line to ground fault (AG) at a distance of 25 km with a current of 2.8953 kA. The selected threshold line to
ground for fault $\varepsilon = 0.03$ from the simulation results showed that the fault threshold line to ground (AG) was
$\varepsilon = 0.0237$ which is smaller than the threshold (ε) set.

Also shown in Table 2 I_{a1}/I_{a2} and I_{p1}/I_{p2} on all types of faults that are greater than 1, which indicate that the fault was an internal fault in circuit 1, WTC of the aerial mode and ground mode are shown in
Figure 3 The Clarke's transformation and the mother wavelet Db8 obtained the biggest percentage error in
fault location, about 0.4649 %, at the three phase disorder (AB) which had a distance of 75 km and the WTC
of the aerial mode and ground mode are shown in Figure 4 while the smallest percentage error in fault
location was about 0.0750 %, in line to line (AC) at a distance of 100 km. This indicates that the proposed
algorithm for fault classification is accurate and precise.
Table 1. The obtained result for different faults using the Clarke’s Transformation and mother wavelet Db8

<table>
<thead>
<tr>
<th>Fault Inception Angle</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>R_f (Ohm)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fault</td>
<td>AG</td>
<td>BG</td>
<td>AB</td>
<td>AC</td>
<td>ABG</td>
<td>ACG</td>
<td>ABC</td>
<td></td>
</tr>
<tr>
<td>I_2 (kA)</td>
<td>-2.3266</td>
<td>2.3941</td>
<td>-1.6213</td>
<td>1.5088</td>
<td>1.3156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_1 (kA)</td>
<td>0.5543</td>
<td>3.3782</td>
<td>-0.4809</td>
<td>2.3185</td>
<td>-0.5580</td>
<td>1.7432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{f1} (kA)</td>
<td>1.9146</td>
<td>-0.8914</td>
<td>-2.3264</td>
<td>2.3938</td>
<td>-1.6364</td>
<td>1.6941</td>
<td>1.3141</td>
<td></td>
</tr>
<tr>
<td>I_{f2} (kA)</td>
<td>0.4722</td>
<td>2.0446</td>
<td>1.6739</td>
<td>1.0421</td>
<td>1.4762</td>
<td>0.9851</td>
<td>1.8197</td>
<td></td>
</tr>
<tr>
<td>I_{f3} (kA)</td>
<td>1.9612</td>
<td>2.9020</td>
<td>4.0132</td>
<td>-1.3441</td>
<td>3.0248</td>
<td>1.2014</td>
<td>2.3410</td>
<td></td>
</tr>
<tr>
<td>I_{f4} (kA)</td>
<td>1.0492</td>
<td>1.1841</td>
<td>0.00178</td>
<td>0.00198</td>
<td>0.5472</td>
<td>-0.4538</td>
<td>0.0321</td>
<td></td>
</tr>
<tr>
<td>I_{f5} (kA)</td>
<td>-0.5674</td>
<td>0.4403</td>
<td>0.6615</td>
<td>-0.5065</td>
<td>-0.6707</td>
<td>0.7786</td>
<td>-0.8424</td>
<td></td>
</tr>
<tr>
<td>I_{f6} (kA)</td>
<td>-0.3011</td>
<td>-0.4040</td>
<td>0.4453</td>
<td>0.5377</td>
<td>0.6624</td>
<td>0.4012</td>
<td>0.9667</td>
<td></td>
</tr>
<tr>
<td>I_{f7} (kA)</td>
<td>-3.3743</td>
<td>-2.0245</td>
<td>-3.5168</td>
<td>-4.7267</td>
<td>-2.4391</td>
<td>2.1758</td>
<td>-1.5599</td>
<td></td>
</tr>
<tr>
<td>I_{f8} (kA)</td>
<td>-1.5682</td>
<td>-5.0609</td>
<td>-3.5212</td>
<td>1.9381</td>
<td>-1.9417</td>
<td>2.1708</td>
<td>1.8823</td>
<td></td>
</tr>
<tr>
<td>Calculate point of Fault (km)</td>
<td>25.765</td>
<td>49.103</td>
<td>75.930</td>
<td>99.850</td>
<td>123.995</td>
<td>150.98</td>
<td>174.235</td>
<td></td>
</tr>
<tr>
<td>% Error</td>
<td>0.3825</td>
<td>-0.4994</td>
<td>0.4649</td>
<td>-0.0750</td>
<td>-0.5024</td>
<td>0.4994</td>
<td>0.3825</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Line to line fault (AG) circuit 1 from 25 from bus A, (a) Aerial mode for wavelet mother Db8, (b) For ground mode for wavelet mother Db8.

Figure 4. Line to ground fault (AB) circuit 1 from 75 from bus A, (a) Aerial mode for wavelet Mother Db8, (b) For ground mode for wavelet mother Db8.

4.2. Influence of Fault Resistance

Table 2 shows the effects of variations in the resistance of 25 ohms and 50 ohms with fault inception angle at 15 and 45 degrees with varying distances. The simulation showed that when the resistance was increased, the fault current would drop, where the biggest fault current occurred in line to ground (BG) at a distance of 50 km with a fault resistance of 25 ohms.
Table 2 shows the effects of variations in the resistance of 25 ohms and 50 ohms with fault inception angle at 15 and 45 degrees with varying distances. The simulation showed that when the resistance was increased, the fault current would drop, where the biggest fault current occurred in line to ground (BG) at a distance of 50 km with a fault resistance of 25 ohms. The fault inception at the angle of 15 degrees was \(I_b = 2.2829 \) kA and the threshold obtained at \(\varepsilon = 0.00056 \) was smaller than the threshold set \(\varepsilon = 0.03 \). When using the mother wavelet Db8, the percentage error in the fault location was obtained around 0.2%.

When using the mother wavelet Db8, the percentage error in fault location was obtained around 0.2%. Meanwhile, the percentage error in fault location was obtained around 0.4-0.5%, as shown in Table 3. \(I_{a2}/I_{a2} \) and \(I_{g1}/I_{g2} \) varied from 2.5-8, indicating that the fault was internal to circuit 1.

Table 2. Result for different resistance faults based on mother wavelet Db8

<table>
<thead>
<tr>
<th>Fault Distance (km)</th>
<th>BG</th>
<th>AB</th>
<th>ACG</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

\(\delta \) (km) 0.05, as it was faulted to the ground. The fault line to line (AC) at a fault distance of 125 km, fault resistance of 25 ohms and fault inception angle 30 degrees obtained a threshold of \(\zeta = 0.0017 \), smaller than the threshold set of \(\zeta = 0.02 \).

Table 3. The obtained result for different Fault Inception Angle based on mother wavelet

<table>
<thead>
<tr>
<th>Fault Distance (km)</th>
<th>150</th>
<th>125</th>
<th>75</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Resistance (Ohm)</td>
<td>75</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

4.3. Influence of Fault Inception.

As shown in Table 3, the simulations showed the effect on the variation of fault inception angle, ranging from 30 degrees to 150 degrees, with variations in fault resistance of 50 ohms and 100 ohms in the various types of fault and fault distance. Meanwhile, the threshold obtained in line to line ground disturbance (BCG) at a fault distance of 75 km, fault resistance 75 ohm and fault inception angle 75 degrees was \(\delta = 0.0851 \); greater than the threshold set on the fault line to line to the ground of \(\delta = 0.05 \), as it was faulted to the ground. The fault line to line (AC) at a fault distance of 125 km, fault resistance of 100 ohms and fault inception angle of 30 degrees obtained a threshold of \(\sigma = 0.0017 \), smaller than the threshold set of \(\sigma = 0.02 \).

Table 3 also shows that if the fault inception angle was enlarged, then the fault current would increase, except for fault three-phase (ABC), which resulted with \(I_{a2}/I_{a2} \) and \(I_{g1}/I_{g2} \), between 1.2-3, indicating that the fault was internal fault circuit 1. Meanwhile, the percentage error in fault location was obtained around 0.2-0.5% when using the mother wavelet Db4. The fault classification algorithms show that the proposed algorithm is correct and responsive.
4.4. Percentage Error in Fault Location for different Types of Mother Wavelet

Table 4 shows the simulation error in determining the fault location when using various types of mother wavelet on the interference resistance of 100 ohms, fault inception angle of 0 degrees and a distance of interference, varied from 25 km-190 km. The fault location estimation error was formulated as follows:

\[
\text{Error} \% = \frac{\text{Fault Simulated Distance} - \text{Real fault Distance}}{\text{Total length of line}} \times 100\%
\]

From Table 4 it can be seen that the smallest average error was shown by the mother wavelet DB4, while mother wavelets Sym 4, Coif 4 and Db8 have a variation around 0.2-0.5%

Table 4. Percentage error in fault location for different types of Mother Wavelet from Circuit 1,

<table>
<thead>
<tr>
<th>Type Of Fault</th>
<th>Actual Fault Point (km)</th>
<th>Db4</th>
<th>Coif4</th>
<th>Sym4</th>
<th>DB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG (AG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25.0151</td>
<td>0.0076</td>
<td>25.7650</td>
<td>0.3825</td>
<td>25.3150</td>
</tr>
<tr>
<td>50</td>
<td>49.7601</td>
<td>-0.1949</td>
<td>49.6110</td>
<td>-0.4949</td>
<td>49.0103</td>
</tr>
<tr>
<td>75</td>
<td>75.2550</td>
<td>0.1275</td>
<td>75.8549</td>
<td>0.4274</td>
<td>76.0080</td>
</tr>
<tr>
<td>125</td>
<td>124.745</td>
<td>-0.1275</td>
<td>124.142</td>
<td>-0.4274</td>
<td>123.995</td>
</tr>
<tr>
<td>150</td>
<td>150.239</td>
<td>0.1249</td>
<td>150.389</td>
<td>-0.4949</td>
<td>150.988</td>
</tr>
<tr>
<td>175</td>
<td>174.985</td>
<td>-0.0076</td>
<td>174.350</td>
<td>-0.3825</td>
<td>174.695</td>
</tr>
<tr>
<td>190</td>
<td>198.981</td>
<td>0.0091</td>
<td>198.082</td>
<td>-0.4590</td>
<td>197.750</td>
</tr>
<tr>
<td>25</td>
<td>24.5650</td>
<td>-0.2174</td>
<td>24.1153</td>
<td>-0.4423</td>
<td>25.4651</td>
</tr>
<tr>
<td>50</td>
<td>49.7601</td>
<td>-0.1199</td>
<td>49.1603</td>
<td>-0.4199</td>
<td>48.8603</td>
</tr>
<tr>
<td>75</td>
<td>75.4050</td>
<td>0.2204</td>
<td>75.8549</td>
<td>0.4274</td>
<td>76.0080</td>
</tr>
<tr>
<td>LL (AB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>124.590</td>
<td>-0.2204</td>
<td>124.142</td>
<td>-0.4274</td>
<td>123.995</td>
</tr>
<tr>
<td>150</td>
<td>150.239</td>
<td>0.1199</td>
<td>150.841</td>
<td>0.4199</td>
<td>151.139</td>
</tr>
<tr>
<td>175</td>
<td>175.435</td>
<td>0.2174</td>
<td>175.885</td>
<td>0.4423</td>
<td>174.535</td>
</tr>
<tr>
<td>190</td>
<td>190.432</td>
<td>0.2159</td>
<td>190.232</td>
<td>-0.3840</td>
<td>189.680</td>
</tr>
<tr>
<td>25</td>
<td>25.0151</td>
<td>0.0076</td>
<td>25.0151</td>
<td>0.0076</td>
<td>25.0151</td>
</tr>
<tr>
<td>50</td>
<td>49.7520</td>
<td>-0.1237</td>
<td>49.3120</td>
<td>-0.3449</td>
<td>49.1610</td>
</tr>
<tr>
<td>75</td>
<td>75.6290</td>
<td>0.3150</td>
<td>75.8849</td>
<td>0.4424</td>
<td>75.8540</td>
</tr>
<tr>
<td>LLG (BCG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>124.371</td>
<td>-0.3150</td>
<td>124.161</td>
<td>-0.4224</td>
<td>124.145</td>
</tr>
<tr>
<td>150</td>
<td>150.241</td>
<td>0.1237</td>
<td>150.691</td>
<td>0.3449</td>
<td>150.839</td>
</tr>
<tr>
<td>175</td>
<td>174.985</td>
<td>-0.0076</td>
<td>174.985</td>
<td>0.0076</td>
<td>174.985</td>
</tr>
<tr>
<td>190</td>
<td>190.282</td>
<td>0.1409</td>
<td>189.682</td>
<td>-0.1591</td>
<td>189.982</td>
</tr>
<tr>
<td>25</td>
<td>25.0151</td>
<td>0.0076</td>
<td>25.3150</td>
<td>0.1575</td>
<td>25.6150</td>
</tr>
<tr>
<td>50</td>
<td>49.4600</td>
<td>-0.2699</td>
<td>49.0103</td>
<td>-0.4949</td>
<td>48.8310</td>
</tr>
<tr>
<td>75</td>
<td>75.4050</td>
<td>0.2025</td>
<td>76.0048</td>
<td>0.5024</td>
<td>76.0080</td>
</tr>
<tr>
<td>LLL (ABC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>124.595</td>
<td>-0.2025</td>
<td>123.995</td>
<td>-0.5024</td>
<td>123.995</td>
</tr>
<tr>
<td>150</td>
<td>150.540</td>
<td>0.2699</td>
<td>150.989</td>
<td>0.4949</td>
<td>151.169</td>
</tr>
<tr>
<td>175</td>
<td>174.985</td>
<td>-0.0076</td>
<td>174.685</td>
<td>0.1575</td>
<td>174.395</td>
</tr>
<tr>
<td>190</td>
<td>190.582</td>
<td>0.2909</td>
<td>189.532</td>
<td>-0.2340</td>
<td>189.530</td>
</tr>
</tbody>
</table>

4.5. External Fault

Table 5 shows that \(I_{a1} / I_{a2} = 1 \) and \(I_{g1} / I_{g2} = 1 \) in various types of fault, with a fault resistance of 100 and 0.001 Ohms, and fault inception angle of 0 and 60 degrees, which shows that the disturbance was an external fault. The largest fault current was found in the type of fault Bus B Line to line (AB) with fault resistance 0.0001 Ohm, fault inception angle at 60 degrees, and at 1.4344 kA.

4.6. Determining Fault Location using Karenbauer’s Transformation

Table 6 shows the percentage error in the calculation of fault location by using another method, which is Karenbauer’s Transformation, for comparison when using Clarke’s transformation (Table 1). It turned out that the results obtained by both methods in determining the fault location percentage error were similar. The only difference between \(I_{a1} / I_{a2} \) and \(I_{g1} / I_{g2} \) in Table 1 was that the transformations achieved \(I_{a1} / I_{a2} = -3.3743 \) and \(I_{g1} / I_{g2} = -1.5682 \) respectively, in the type of line to ground disturbance (AG) at fault distance 25 km, fault inception angle 0 degrees and fault resistance 0.001 ohm, whereas Table 6 shows type of fault at \(I_{a1} / I_{a2} = 3.6515 \) and \(I_{g1} / I_{g2} = 2.4853 \).
Table 5. The obtained result for different external fault

<table>
<thead>
<tr>
<th>Fault Location</th>
<th>Bus A</th>
<th>Bus B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AG</td>
<td>AB</td>
</tr>
<tr>
<td>Fault Inception Angle</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Rf (Ohm)</td>
<td>0.001</td>
<td>100</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-1.1360</td>
<td>-1.2477</td>
</tr>
<tr>
<td>Ib (kA)</td>
<td>0.3369</td>
<td>-1.5471</td>
</tr>
<tr>
<td>Ic (kA)</td>
<td>0.4560</td>
<td>0.3269</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-0.9213</td>
<td>1.2477</td>
</tr>
<tr>
<td>If1 (kA)</td>
<td>0.3047</td>
<td>-1.0665</td>
</tr>
<tr>
<td>Id (kA)</td>
<td>-0.9213</td>
<td>1.2478</td>
</tr>
<tr>
<td>If2 (kA)</td>
<td>0.3051</td>
<td>-1.0661</td>
</tr>
<tr>
<td>Ia / If2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Id / If2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-0.2151</td>
<td>0</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-1.1360</td>
<td>1.2477</td>
</tr>
</tbody>
</table>

Table 6. The obtained result for different faults based on Karenbauer transformation and mother wavelet Db8

<table>
<thead>
<tr>
<th>Fault</th>
<th>AG</th>
<th>BG</th>
<th>AB</th>
<th>AC</th>
<th>ABG</th>
<th>ACG</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>Rf (Ohm)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fault Inception Angle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>2.8953</td>
<td>0.5330</td>
<td>-2.3266</td>
<td>2.3941</td>
<td>-1.6213</td>
<td>1.5088</td>
<td>1.3156</td>
</tr>
<tr>
<td>Ib (kA)</td>
<td>0.5543</td>
<td>3.3782</td>
<td>2.6240</td>
<td>-0.4809</td>
<td>2.3185</td>
<td>-0.5580</td>
<td>1.7432</td>
</tr>
<tr>
<td>Ic (kA)</td>
<td>0.5950</td>
<td>-0.5358</td>
<td>0.4682</td>
<td>2.1064</td>
<td>-0.5121</td>
<td>-1.9317</td>
<td>-1.8289</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-1.0664</td>
<td>-1.0156</td>
<td>-1.6500</td>
<td>0.8938</td>
<td>-1.2098</td>
<td>0.6492</td>
<td>-0.9158</td>
</tr>
<tr>
<td>Ic (kA)</td>
<td>0.8711</td>
<td>-0.2779</td>
<td>-0.6763</td>
<td>1.5000</td>
<td>-0.4432</td>
<td>1.1054</td>
<td>0.9397</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>-0.2904</td>
<td>0.2989</td>
<td>-0.3918</td>
<td>-0.2586</td>
<td>0.2967</td>
<td>0.3248</td>
<td>0.5674</td>
</tr>
<tr>
<td>Ia (kA)</td>
<td>0.3505</td>
<td>0.1752</td>
<td>-0.2992</td>
<td>-0.3757</td>
<td>0.3797</td>
<td>0.4649</td>
<td>0.5864</td>
</tr>
<tr>
<td>Ia / If2</td>
<td>3.6515</td>
<td>-3.3978</td>
<td>4.2133</td>
<td>-3.4563</td>
<td>-4.0776</td>
<td>1.9988</td>
<td>-1.6140</td>
</tr>
<tr>
<td>Ic / Ia</td>
<td>2.4853</td>
<td>1.5862</td>
<td>2.2603</td>
<td>-3.9925</td>
<td>-1.1673</td>
<td>2.3778</td>
<td>1.6025</td>
</tr>
<tr>
<td>Io (kA)</td>
<td>1.0422</td>
<td>1.1841</td>
<td>0.0179</td>
<td>0.0198</td>
<td>0.5472</td>
<td>-0.4538</td>
<td>0.0321</td>
</tr>
<tr>
<td>Calculate point of</td>
<td>25.765</td>
<td>49.103</td>
<td>75.930</td>
<td>99.850</td>
<td>123.995</td>
<td>150.98</td>
<td>174.235</td>
</tr>
<tr>
<td>% Error</td>
<td>0.3825</td>
<td>-0.4994</td>
<td>0.4649</td>
<td>-0.0750</td>
<td>-0.5024</td>
<td>0.4994</td>
<td>0.3825</td>
</tr>
</tbody>
</table>

5. CONCLUSION

The application of parallel transmission lines requires a more special consideration in comparison with the single transmission line, due to the effect of mutual coupling method. To overcome this problem, a new method was proposed, by using the Current alpha and beta (Current mode) from the Clarke’s transformation to convert the signal. Then, discrete wavelet transform (DWT) is used to obtain wavelet transform coefficients (WTC)², to determine the current time when the fault amplitude values (WTC)² would reach a maximum point, to determine the fault location distance. This paper also proposed algorithm fault classification by using Clarke’s transformation. The simulation results showed that the results were accurate, which were also compared against the results obtained by using the Karenbauer’s transformation.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Universiti Teknologi Malaysia, The State Polytechnic of Ujung Pandang, PT. PLN (Persero) of South Sulawesi and the Government of South Sulawesi Indonesia for providing the financial and technical support for this research.

REFERENCES

Algorithm for Fault Location and Classification on Parallel Transmission Line (Makmur Saini)
BIOGRAPHIES OF AUTHORS

Makmur Saini received his B. Eng. in Electrical Engineering in 1987 from Hasanuddin University and M.Eng Electrical Power in 1993 from Institut Teknologi Bandung Indonesia. Currently, he is an Associate Professor Engineering Department of Mechanical Engineering, Politeknik Negeri Ujung Pandang, Makassar. His research interests include Power System Protection, power system stability, Transmission and Distribution, High Voltage and renewable energy application.

Abdullah Asuaimi Mohd Zin received the B.Sc. degree from Gadjah Mada University, Indonesia, in 1976, the M.Sc. degree from University of Strathclyde, Strathclyde, U.K. in 1981, and the Ph.D. degree from the University of Manchester Institute of Science and Technology, Manchester, U.K., in 1988. Currently, he is a Professor Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru. His research interests include power system protection, application of neural network in power system, arcing fault in underground cables, power quality and dynamic equivalent of power systems. Dr. Mohd Zin is a corporate member of The Institution of Engineers, Malaysia (IEM) and a member of the Institute of Electrical Engineers (U.K.). He is a registered Professional Engineer (P. Eng.) in Malaysia and Chartered Engineer (C.Eng.) in the United Kingdom.

Mohd Wazir Mustafa received his B. Eng Degree (1988), M. Sc. (1993) and PhD (1997) from university of Strathclyde. He is currently an Associate Professor and Deputy Dean Graduate Studies and Research at Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia. He research interest includes power system stability, FACTS and power system distribution automation. He is a member of IEEE.

Ahmad Rizal Sultan received the B.Sc. degree in 1999, the M.Eng Electrical 2006 from Hasanuddin University; Indonesia. Currently, he is an Associate Professor Engineering Department of Electrical Engineering, Politeknik Negeri Ujung Pandang, Makassar. His areas of interests are Power System Grounding Analysis, Power System Protection and Electric installation.

Rusdi Nur received his B.Eng. in Mechanical Engineering in 1999 from Hasanuddin University, Dipl.Eng of Manufacturing Engineering in 2001, and M.Eng of Mechanical Engineering in 2008 from Hasanuddin University Indonesia. Ph.D. degree from Universiti Teknologi Malaysia, Johor, Malaysia, in 2016. Currently, he is an Associate Professor Engineering Department of Mechanical Engineering, Politeknik Negeri Ujung Pandang, Makassar. His research interests include machining process and sustainable manufacturing.