A co-pyrolysis study was conducted to examine the characteristics of rice straw (RS) with high density polyethylene bag (PB) or plastic bag waste (PB) as the energy source. The determination of RS characteristics with PB mixtures of about 10%, 30%, and 50% was conducted by a thermogravimetric analysis at the temperatures of 30-800 °C, time range of 0-82 min, heating rate of 10 °C/min, and the flow rate of nitrogen of 50 ml/min. Kinetic studies were performed using the Arrhenius law to determine the activation energy. The dehydration process occurs at the temperature range of 40-110°C.

Thermal decomposition occurs at the temperature range of 200-340 °C, 400-500 °C, and 580-670 °C. The greater the percentage of PB in RS, the higher the value of Ea is produced. It is concluded that RS co-pyrolysis with PB had met the characteristic requirement as an energy source.

The results can be implemented in gasification and combustion to overcome electricity shortage and MSW in Indonesia. Keywords: plastic bag, rice straw, kinetic study,
Introduction Indonesia’s dependence on fossil fuels is still very high, almost reaching 95%. In 2011, oil is still a source of energy with the largest share, at 49.5% of the total energy of about 1,176 billion barrels of oil equivalent.

Furthermore, coal and gas were in the proportion of 26% and 20.4%, respectively. This condition needs serious attention because fossil energy reserves are dwindling from year to year. Indonesia’s oil potential is feared to be exhausted in about 23 years, while natural gas and coal are estimated to be exhausted in 55 and 83 years from the year 2011, respectively. These conditions require optimizing the utilization of new and renewable energy to meet the needs of electrical energy.

The availability of electrical energy in Indonesia is still lacking, with the electrification ratio in 2011 at 72.95%, and there are still 27.05% of households that do not get electricity services, especially in remote areas [1]. The potential for renewable energy resources in Indonesia is very large, including the agricultural energy, which can be used as a source of electrical energy.

In 2013, the potential for rice straw (RS) was around 106.31 million tons, with a potential surplus of 5.89 million tons, which is the equivalence to the potential energy of about 325,204 TJ [2]. The potential of RS in Indonesia has an average increase of approximately 2-3.1% per year [3].

Additionally, the potential energy of municipal solid waste (MSW) is quite large and has not been used as a source of energy. In 2010, the potential of plastic solid waste (PSW) from MSW in Indonesia reached 693 tons with the energy potential of 28,752,528 MJ, which is equivalent to 1,065 tons of coal or 593 ton of oil [4].

Plastic bags (PB) made of high density polyethylene (HDPE) have the potential to pollute the environment because it cannot be recycled, so it does not have economic value. However, PB has a great energy potential with a calorific value (CV) of about 41.2 MJ/kg, while the CV of RS is about 13.6 MJ/kg. Based on the CV and the potential for availability from both of the wastes, they were considered in the co-pyrolysis study conducted to determine the feasibility of the application as an alternative fuel by gasification and combustion in the power plant.

The study on pyrolysis of RS as a source of energy has been done many times before [5 - 11], as did the studies on PB [12, 13]. Thermogravimetric analysis is useful to study the kinetic decomposition reaction, mechanism of the thermal decomposition (TD) and combustion of biomass. Some literatures have extensively demonstrated the thermochemical pyrolysis and combustion of biomass to produce energy and chemicals.
Similarly, PB is derived from MSW and the pyrolysis treatment of MSW has been made to provide alternative energy resources and chemical raw materials. The main component of MSW is derived from cellulose or lignin polymer-based materials and inorganic materials. Co-pyrolysis method has received much attention because this method has the potential for reducing the volume of waste, recovering of various chemicals, and replacing fossil fuels [14].

The study of co-pyrolysis is important and it is fundamental to know the characteristics of the thermal treatment, mechanism, and the transformations that occur during the thermo-chemical conversion process. The process of converting biomass into fuel is an early stage before the thermo chemical process for gasification and combustion. Therefore, it is very important to understand the kinetics of pyrolysis for feasibility assessment, design, and application of biomass conversion in the industry as an alternative fuel in the power plant. A co-pyrolysis study was performed to obtain the characteristic of RS and PB mixtures (10%, 30%, and 50% of PB) to the varying times and temperatures in the heat treatment. The results obtained were included into the feasibility assessment material as an alternative fuel to generate electricity, particularly in Indonesia.

2. MATERIALS AND METHODS

2.1 Materials

The sample materials in this study are RS and PB (HDPE) as the alternative energy source. All samples were sun dried and then, a size reduction of the raw materials was done using a cutter and a grinding mill. The samples were again grounded to obtain a particle size of 0.125 mm. The sieving of the raw materials was done to obtain uniformity in size of about 0.125-0.3 mm. Subsequently, the sample was heated with a temperature of about 105°C for 7 hours for the RS samples and 1 hour for the PB samples, as were done in the previous studies [6, 11].

The mixing of samples was performed by weighing each material waste with the a mass ratio of RS and PB as: RS (100%), R 9P1 (90% : 10%), R 7P3 (70% : 30%), R 7P3 (50% : 50%), and PB (100%) by using a digital balance. Each composition ratio of the mixture is determined to be 10 grams. To obtain a uniform and homogeneous mixture, the samples were mixed and stirred.

A small particle-size mixture can certainly contain homogeneous blends, thereby ensuring the representation from the mixture in the test samples. 2.2 Proximate and Ultimate Analysis A proximate analysis of the samples was conducted to determine the...
value of energy, moisture content (MC), volatile matter (VM), fixed carbon (FC), and ash content in the fuel.

Meanwhile, the ultimate analysis was conducted to determine the chemical components of the sample, which contained carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O). The CV of the samples was obtained from the test results using a bomb calorimeter IKA C 2000 models, according to the DIN 51900 methods. The proximate analysis of the samples was done according to the standard methods, i.e.

ASTM D3173 for MC, ASTM D3174 for ash, ASTM D 3172 for FC, and ASTM D3175 for VM, as in the previous studies [15, 16]. However, the proximate analysis can be used like any other method as in the previous studies [17, 18]. Meanwhile, the ultimate analysis of the samples was done according to the standard methods, i.e.

ASTM D 5373 for C, H, and N, ASTM D 4239 for S, and ASTM D 3176 for O. 2.3 Thermogravimetric Analysis Co-pyrolysis studies were performed using a thermogravimetric analysis (TGA/ SDTA851, Mettler Toledo). The heating rates were controlled at 10 °C/min from 30-800 °C, with the duration of 0-82 min, N flow rate of 50 ml/min, and sample mass (MS) of 5.5-5.7 mg, as stated in the previous studies [19]. Pyrolysis analysis was also used to determine the characteristics of pyrolytic oils of sewage sludge [20]. The processes of moisture evaporation and thermal decomposition (TD) on the co-pyrolysis process were analyzed using TGA and DTG curves. According to Mishra and Bhaskar [21], the pyrolysis process in general, can be divided into three stages: moisture evaporation, main devolatilization (active pyrolysis zone) and continuous slight devolatilization (passive pyrolysis zone). 2.4 Kinetic Analysis In the pyrolysis process, the moisture evaporates first (110pC), and then hemicelluloses decomposition happens (200-260 °C), followed by cellulose (240-340°C) and lignin (280-500 °C). When the temperature reaches 500-600 °C, the pyrolysis reaction is completed [22], as described in the following equation: Heat (500-600 °C) (C6H12O6)m ? (H2 + CO + CH 4 + ... + C5H12) + (H 2O + ... + CH 3OH + CH 3COOH + ...)

+ C (1) Equation (1) shows the pyrolysis process with the perfect TD that will produce gas, liquid, and char. Within the gas phase, it produced thermal energy, while the liquid Biomass Gas Liquid Char 980 Chiang Mai J. Sci. 2017; 44(3) phase and char were the result of pyrolysis residues.

The approximate compositions of hemicelluloses, cellulose, and lignin in the RS were
However, the results of another study reported that NaOH pretreated RS that consisted of cellulose about 58.11%, hemicelluloses 21.68%, and lignin 4.15% [23]. The characterizations of RS and PB were done using thermogravimetric data to investigate the kinetic reactions on the results of TD.

Chemical kinetics of pyrolysis and description of transport phenomena can provide useful information for the design and optimization of thermo-chemical systems. As were done in the previous studies [15, 24-27], kinetic parameters were calculated using the Arrhenius law by the equation: \(k(T) = A e^{E/RT} \) (1) where \(A \) is the pre-exponential or frequency factor, \(E \) is the activation energy of the reaction, \(R \) is the universal gas constant (8.314 J/mol.K), \(T \) is the absolute temperature, \(n \) is the order of reaction, \(t \) is time, and \(a \) is the fraction of the reactants decomposed at time, \(t \) (min).

The extent of reaction, \(a \), is defined in terms of the mass change in the samples or mass of volatiles produced. \(a = \) (4) where \(a \) is the mass loss fraction (mg), \(M_0 \) is the initial mass of the sample at the beginning reaction (mg), \(M_i \) is the actual mass of the maple (mg), and \(M_f \) is the final mass of the sample (mg).

For the constant heating rate (\(\beta \)), the following equation can be expressed: \(\beta = \) (5) \(\frac{E}{RT} \) \(\frac{dT}{da} \) \(\frac{dM_0 - M_f}{M_0 - M_i} \) (6) Integrating Eq. (6), the following equation can be obtained: \(\frac{dM_0 - M_f}{M_0 - M_i} \) (7)

Since \(e^{-E/RT} \) has no exact integral, \(e^{-E/RT} \) can be expressed as an asymptotic series and its integration by ignoring the higher order terms which gives: \(= \) (9) (10) If assuming that \(2RT/E << 1 \), then Eq.

(9) becomes: \(\ln[] = \ln[] - (\text{for } n \neq 1) \) (10) In order to simplify the calculations, the order of the reaction, \(n \), is assumed to be unity, and hence, Eq. (10) can be presented as follows: \(\ln[-] = \ln[] - (\text{for } n \neq 1) \) (11) The Eq. (11) will result in a straight line with the slope \(-E/R\) and an intercept of \(\ln[AR/BE] \). This was done by plotting the graph between the following: \(\ln[-] \) versus \([] \) (for \(n \neq 1) \) (12) \(dT \) \(\frac{dM_0 - M_f}{M_0 - M_i} \) \(\frac{1}{\beta} \) \(A \beta A 1 - n 1 - (1 - a)1-n T 0 1 - n 1 - (1 - a)1-n \beta E ART2 \beta E \beta E 2RT T2(1 - n) 1 - (1 - a)1-n \beta E AR 2RT RT E T2(1 - n) 1 - (1 - a)1-n \beta E AR RT E \beta E AR RT E T2 \ln(1 - a) T2 \ln(1 - a) \) (11) Chiang Mai J. Sci.

2017; 44(3) 981 The values of \(a \) and \(T \) will be obtained from the thermogravimetric analysis. The criteria used for the acceptable values of \(E \) and \(A \) were the final value of \(n \) that should yield the values of \(E_a \) and the linear correlation coefficient (\(R^2 \)) of the most appropriate (> 0.90). Eq.
11 can be analogous to the equation of the straight line, which is often symbolized by the linear regression equation: $y = mx + b$. Thus, the $-\ln(\cdot)$ is the y-axis, is the x-axis, m = is the slope, and $b = \ln$ is intercept of the line with y-axis. The Ea at each TD (mass loss) was obtained by using Microsoft Excel. 3. RESULTS AND DISCUSSION

3.1 Characterization of Fuels

The characteristic parameters of the fuel that were obtained from the proximate and ultimate analysis results are presented in Table 1. The CV of RS was 13.56 MJ/kg, while the addition of PB to 10%, 30%, and 50% in RS increased the CV of R9P1, T2 ln(1 - a) to 19.82 MJ/kg, 24.68 MJ/kg, and 29.64 MJ/kg, respectively. Similarly, the values of VM, C, and H were increased by the amount of percentages of PB in the RS.

This data showed that the CV was directly proportional (positive correlation) with the VM, C, and H of the fuel. In contrast, the percentages of FC, MC, O, N, S, and ash were decreased with the addition of a greater percentage of PB. It was found that the CV was inversely proportional (negative correlation) with the FC, MC, O, N, and ash of the fuel.

One of the physical properties of the fuel that needed attention was the MC. It affected the characteristics of the fuel, such as CV and ash produced by the combustion process. The MC was directly proportional (positive correlation) with ash.

The combustion process was expected to produce a maximum CV and the ash content was expected to be at minimum. A higher CV will generate more energy and a larger power. Table 1. Test result on CV, proximate and ultimate analysis of RS and PB. No. 1 2 3 Parameters CV Proximate Analysis FC VM MC Ash Ultimate Analysis C H O N S Ash Unit (MJ/kg) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) RS 13.56 14.87 55.07 11.55 18.51 39.52 5.46 35.67 0.74 0.1 18.51 982 Chiang Mai J. Sci. 2017; 44(3) Table 1 shows that the addition of PB in RS can improve the quality of fuel, especially increasing the CV, VM, C, and H. Additionally, it will also decrease the MC, O, S, N, and ash. The percentage content of C and H increased, especially in the composition of 50% (sample of R5P5), which meant a greater contribution to the energy released.

However, the percentage of O in the fuel decreased, which meant enlarging the content of C and H as well as increasing the heating value (HHV and LHV) of fuel (based on the Dulong formula). In addition, greater combustion air was required in the process of fuel.
combustion. The O content was also directly proportional to the ash content of the fuel, as shown in the samples RS, R 9P1, R7P3, R5P5, and PB.

The higher the content of VM in the fuel, the easier it would be to burn the light up and improve the qualities of the combustion and gasification processes. The value of N will reduce the NO\textsubscript{x} emissions in the air, while a low S can reduce or minimize pollution and corrosion. The high value of VM, ash, and the low amount of MC were the important characteristics required in the process of fuel combustion.

A high MC will aggravate the chemical properties of the fuel due to the complicated process of the fuel ignition. A high ash content can affect the rate of combustion, aggravating the combustion process, result in a reduction of energy, poor combustion, slag formation, and increase the cost of handling, processing, and disposal [15].

Thermal Decomposition Characteristics

The pyrolysis processes of RS and PB were conducted as a comparison between the co-pyrolysis of R 9P1, R 7P3, and R 5P5. Based on the results of termogravimetric analysis as presented in Table 2, the dehydration process (DP) of RS occurred at the temperature range of 40-110 °C and the TD process occurred in one stage at the temperature range of 200-500°C. This value had similarities with the results of previous studies with the same heating rates [4, 28]. This was consistent with the TD process of cellulose, which consisted of hemicelluloses decomposition (200-260 °C), followed by hemicelluloses decomposition (200-260 °C), followed by cellulose decomposition (240-340 °C) and lignin decomposition (280-500°C).

When the temperature reached to about 500-600 °C, the pyrolysis reaction was completed [22]. Several previous studies [21, 29] reported the pyrolysis process of RS with different heating rates. The increase in heating rate on the pyrolysis process affected the position of the TG curve and the maximum level of decomposition, and the location of the peak on the DTG curve which was the main decomposition zone shifted to a higher temperature range.

Similarly, the rate of ML increased and the maximum value DTG curve also shifted to higher temperatures. Furthermore, the wheat straw with the different heating rate [30] showed at the higher heating rate, the decomposition process shifted to a higher temperature, as shown in the TD process that occurred at temperatures ranging 200-500 °C, 200-550°C, and 200-600°C with the heating rates of 10 K/min, 15 K/min, and 20 K/min, respectively.
Meanwhile, the TD of PB occurred at the temperature range of 400-450 °C, and 620-710 °C, without performing the DP because PB is one of the non-polar materials. The co-pyrolysis process of R 9P1, R 7P3, and R5P5, TD process occurred in four zones, with the temperature ranges from 40-100°C, 200-340 °C, 400-450 °C, and 690-680 °C. Based on the results of termogravimetric analysis as presented in Table 2, by using Chiang Mai J. Sci. 2017; 44(3) 983 the Sma4Win software, the TGA and DTG curves of RS, R 9P1, R7P3, R 5P5, and PB were obtained, as shown in Figure 1. TGA (a) and DTG (b) curves of RS, R9P1, R7P3, R5P5, and PB at heating rate of 10pC/min, temperatures decomposition of 30-800°C, and N flow rate of 50 ml/min. The process of TD and the resulting char residue on each sample (RS, R 9P1, R7P3, R5P5, and PB) are shown in the TGA curve (Figure 1a).

The values of TD in each zone are presented in the DTG curve (Figure 1b). The TD process occurred in four zones, where a greater TD process occurred at the third zone and produced a large Ea. The process of decomposition of any material is presented in detail in Table 2.

It shows the pyrolysis process of RS where the DP in the first zone (DPZ 1) that occurred in the temperature range of 40-110°C with a mass loss (ML) of about 6.4%. In this case, the MC of RS was removed to approximately 6.4% with the heating process at the temperature range of 40-110 °C. The TD process in the second zone (TDZ 2) occurred in the temperature range of 200-340 °C with the ML at 52.5%. Thus, the TD process of RS in the pyrolysis remained approximately 42.1% as liquid and char. The co-pyrolysis process of R 9P1, R7P3, and R 5P5, and TDZ 2 occurred in the temperature range of 200-340°C with the ML at about 36.4%, 28.9%, and 22.6%, respectively. In this condition, the RS component in the fuel turned into TD perfectly, while the PB components started to go into TD in the thirst zone (TDZ 3) at the temperature range of 400-500 °C with the ML at about 15.1%, 30.7%, 41.6%, and 79.7% for R 9P1, R7P3, R5P5 and PB, respectively.

In this case, it appeared that the greater the content of PB in the fuel, the greater the ML. Similarly, the TD process in the fourth zone (TDZ 4) was done for R 9P1, R 7P3, R 5P5 and PB in the temperature ranges of 590-660 °C, 590-670 °C, 600-680 °C, and 620-710 °C, with the ML at 4.4%, 6.1%, 6.4 %, 8.8%, respectively. TDZ 4 showed that the greater the content of PB in the fuel, the greater the ML.

In total, the co-pyrolysis of R 9P1, R 7P3, R5P5, and ML occurred at approximately 60.9%,
68.7%, 72.7%, 88.4%, so the char residues generated were approximately 39.1%, 31.3%, 27.3%, respectively. In this case, it appeared that there was a smaller ash content with the increasing percentage of PB in the fuel.

These characteristics indicated the use of R 9P1, R7P3, and R5P5 as fuel, with the minimum required combustion temperature of about 590-710°C. The addition of PB had a significant influence on the characteristics of R 9P1, R7P3, and R 5P5, which was different from the characteristics of RS. 3.3 Kinetic Parameters Analysis Based on the data in Table 2 and by using Microsoft Excel the linear regression of the Arrhenius equation, R 9P1 was obtained at every stage of TD. TDZ 2 occurred at the temperatures of about 200-340 °C. In this condition, Ea1 = 49.82 kJ/mol was obtained, based on the linear regression equation:

\[y_1 = 5992x + 3.262, \ R^2 = 0.986. \]

The linear regression curve of R 9P1 is shown in (Figure 1a). The same method, TDZ 3 obtained \(y_2 = 4897x + 6.087, \ R^2 = 0.924 \) that occurred at the temperature range of 673-773 K (400-500 °C). The fourth stage obtained \(y_3 = 574x + 13.12, \ R^2 = 0.943 \) at the temperature from 863-933 K (590-660°C). In total, the Ea of R 9P1 that was obtained was about 95.3 kJ/mol, which was greater than the Ea of RS.

Meanwhile, the sample of R 7P3 at the TDZ 2 obtained \(Ea_2 = 40.71 \) kJ/mol based on the equation:

\[y_2 = 4897x + 6.087, \ R^2 = 0.924 \]

that occurred at the temperature range of 673-773 K (400-500 °C). The same method, TDZ 3 obtained \(Ea_2 = 77.35 \) kJ/mol based on the equation:

\[y_2 = 9303x - 0.407, \ R^2 = 0.907. \]

This occurred at the temperature range of 673-773 K (400-500 °C). In the fourth stage, the equation:

\[y_3 = 1566x + 10.08, \ R^2 = 0.925 \] obtained \(Ea_3 = 13.01 \) kJ/mol at the temperature range of 863-943 K (590-660°C). In total, the Ea of R 7P3 obtained was about 133.87 kJ/mol, which was greater than the Ea of RS and the Ea of R 9P1. Table 2. The thermogravimetric analyzer results of the co-pyrolysis process. Figure 2.

The linear regression curve of -ln [ln (1 - a)/T_] vs. 1/T*103 for R 9P1, R7P3, R5P5, RS. (d) RS (a) R9P1 (b) R7P3 (c) R5P5 Fuel RS R9P1 R7P3 R5P5 P8 MS(g) 5.6 5.7 5.5 5.5 5.6 ML(%) 6.4 4.9 3.1 2.1 - DPZ 1 T(°C) 40-110 40-110 40-110 40-110 - Char residue (%) 41.1 39.1 31.3 27.3 11.6 ML(%) 52.5 36.4 28.9 22.6 - TDZ 2 T(°C) 200-500 200-340 200-340 200-340 - ML(%) 15.1 30.7 41.6 79.7 TDZ 3 T(°C) - 400-500 400-500 400-500 400-500 ML(%) - 4.4 6.1 6.4 8.8

TDZ 4 T(°C) - 590-660 590-670 600-680 620-710 Chiang Mai J. Sci. 2017; 44(3) 985

Similarly, in the sample of R 5P5, TDZ 2 that occurred at the temperature of about 200-340°C, obtained \(Ea_1 = 51.78 \) kJ/mol, based on the linear regression equation:

\[y_1 = \]
6228x + 3.843, R^2 = 0.967. The linear regression curve of -ln [ln (1-a)/T^2] vs. 1/T*10^3 of R5P5 is shown in Figure 2c. Using the same method, TDZ 3 obtained Ea2 = 111.33 kJ/mol based on the equation: y2 = 13390x - 4.768, R^2 = 0.925 at temperature range of 673-773 K (400-500°C). The fourth stage obtained Ea3 = 21.13 kJ/mol, based on the equation: y3 = 2542x + 9.741, R^2 = 0.951 at the temperature range of 873-953 K (600-680°C). In total, the Ea of R5P5 obtained was about 184.24 kJ/mol, which was greater than the Ea of RS, R9P1, and R7P3. This showed that the addition PB in R9P1, R7P7, and R5P5, improved the Ea of the fuels.

As a comparison, the co-pyrolysis of R9P1, R7P7, and R5P5, Ea of RS and PB were determined at each TD. The TD at RS pyrolysis process occurred in the temperature range of 200-500 °C, thus obtaining Ea = 55.21 kJ/mol. K based on Arrhenius Law by using the linear regression equation: y = 6640x + 4.653, R^2 = 0.979 (Figure 2d).

This value was almost equal to the previous study [28] with a heating rate of 10 °C/min, where the TD occurred in the temperature range of 200-500 °C, thus obtaining Ea = 59.93 kJ/mol. K based on the linear regression equation: y = 7208.6x - 16.705, R^2 = 0.9952. The TD 1 of PB occurred at the temperature of about 400-500 °C obtained Ea 1 = 211.43 kJ/mol based on the linear regression equation: y 1 = 25430x - 20.44, R^2 = 0.989 (Figure 2c). The same method, the TDZ 2, obtained Ea 2 = 44.03 kJ/mol, based on the equation: y 2 = 5296x + 6.935, R^2 = 0.907 at temperature range of 883 - 963 K (620 - 710°C). In total, the Ea of PB that was obtained was about 255.46 kJ/mol. Table 3.

Linear regression of Arrhenius function and activation energy for co-pyrolysis.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Decom-position (C)</th>
<th>Temperature</th>
<th>Ea1 (kJ/mol)</th>
<th>Ea2 (kJ/mol)</th>
<th>Ea3 (kJ/mol)</th>
<th>Total (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>200 - 500 200 - 340 400 - 500 590 - 660 200 - 340 400 - 500 600 - 680 400 - 500 620 - 710</td>
<td>55.21</td>
<td>49.8</td>
<td>43.5</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>R9P1</td>
<td>200 - 340 400 - 500 590 - 660 200 - 340 400 - 500 600 - 680 400 - 500 620 - 710</td>
<td>59.93</td>
<td>44.03</td>
<td>133.9</td>
<td>255.46</td>
<td></td>
</tr>
<tr>
<td>R7P3</td>
<td>55.21</td>
<td>51.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5P5</td>
<td>574x + 13.12</td>
<td>6228x + 3.843</td>
<td>184.24</td>
<td>55.21</td>
<td>255.5</td>
<td></td>
</tr>
</tbody>
</table>

Chiang Mai J. Sci. 2017; 44(3) Based on the analysis of kinetic studies, the determination of Ea at each TD was conducted based on the linear regression equation. The value of correlation coefficient (R^2) showed the relationship between the variables x and y.

The linear regression equation can be used to determine the value of Ea when the value...
R 2 > 0.9 (Table 3). It can be seen that the Ea of PB was greater than the Ea of RS. The Ea increased with the increasing percentage of PB in RS. The results of PB pyrolysis generated an Ea of about 255.5 kJ/mol, which was very large if compared with the Ea of RS, which was about 52 kJ/mol.

The greater the addition of PB in the RS, the greater the Ea generated. The addition of PB to approximately 10%, 30%, and 50% in RS can improve the Ea of R9P1, R7P3, and R5P5 to approximately 81%, 154%, and 250%, respectively. The co-pyrolysis results showed that the addition of PB can improve the thermal characteristics of the RS to improve the performance, resulting in a large energy and lowering the char residue. 4. CONCLUSIONS Co-pyrolysis of PB into the RS showed an increase in the thermal characteristics of the fuel samples.

The higher percentage addition of PB into the RS on the samples R9P1, R7P3, and R5P5 generated the higher the content of calorific value, volatile matter, hydrogen, and carbon of the samples. However, the contents of oxygen, nitrogen, sulfur, moisture, and ash decreased. Similarly, the addition of PB into RS showed an increase of the activation energy of samples and reduced charcoal residue content.

Thus, the use of PB as a mixture of RS besides increasing the calorific value and the activation energy was to reduce NO x and SO x emissions in the air that caused environmental pollution. This showed the use of PB as a mixture of RS had the eligibility as a source of energy in the process of gasification and combustion. The expected utilization of this waste could be an alternative fuel to overcome the shortage of electrical energy, reduce the use of coal, and overcome the problem of plastic waste in Indonesia.

INTERNET SOURCES:

<1% - http://akademiabaru.com/wvcarmea/docu/008.pdf
<1% - https://www.science.gov/topicpages/y/yields+high+quality
<1% - https://pubs.rsc.org/en/content/articlehtml/2016/re/c6re00082g
<1% - http://iopscience.iop.org/volume/1755-1315/105
<1% - http://www.rsc.org/periodic-table/element/51/antimony
i-patients-with-low-literate-skills-3590.html
<1% - https://www.sec.gov/Archives/edgar/data/2809/000104746917002013/0001047469-17-002013.txt
<1% - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC374386/
<1% - https://www.kean.edu/~fosborne/bstat/09rc.html
<1% - https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/22_1_NEW%20ORLEANS_03-77_0233.pdf
<1% - https://www.chemweb.com/articles/00162361/0119000C
<1% - https://www.bbc.co.uk/news/av/world-asia-43845632/the-plastic-choking-indonesian-rivers
<1% - https://www.scientific.net/AMM.695.806
<1% - https://pubs.acs.org/doi/abs/10.1021/ef900933k