Dear Prof. Sławomir TUMANSKI,

We intend to submit our original paper entitled: Solar Panels Performance on Asbestos Roof and Spandex Roof Material in Przegląd Elektrotechniczny Journal.

Thank you very much for considering our manuscript for publish in this journal.

Best Regards,

Muhammad Ruswandi Djalal
S.T. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

--------- Forwarded message --------
From: Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>
Date: Thu, Jan 5, 2023 at 5:03 AM
Subject: Paper Submission
To: <tumanski@tumanski.pl>, <red.pe@sigma-not.pl>

We intend to submit our original paper entitled: Solar Panels Performance on Asbestos Roof and Spandex Roof Material in Przegląd Elektrotechniczny Journal.

Thank you very much for considering our manuscript for publish in this journal.

Best Regards,

Muhammad Ruswandi Djalal
S.T. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

2 attachments
Submission.doc
70K
Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>
To: Nur Hamzah Said <nurhamzah.said@gmail.com>

========== Forwarded message ==========
From: ST <tumanski@tumanski.pl>
Date: Sat, Mar 25, 2023 at 9:16 PM
Subject: RE: Paper Submission
To: Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>

Review 7040 enclosed - we are waiting for final version and data for invoice (the best name and address of your University)

Best regards

Slawomir Tumanski
Professor

Przeglad Elektrotechniczny (Electrical Review)
Editor in Chief
ul. Ratuszowa 11
go-950 Warszawa
e-mail: red.pe@sigma-not.pl
www.red.pe.org.pl

tel (mobile): 48 693 428 056
tel. (private): 48 22 711 0303
e-mail: tumanski@tumanski.pl
Manuscript reference: PE
Authors: Nur HAMZAH, Firman FIRMAN, Muhammad Ruswandi DJALAL
Title: Solar Panels Performance on Asbestos Roof and Spandex Roof Material

1. We confirm that this paper is original and was not published or does not have similarity with other papers. In the case when this paper was earlier submitted to other journal authors are obliged to inform about this.

2. By submitting this work for publication in Przegląd Elektrotechniczny, the authors transfer copyrights to the manuscript in its printed and Internet version to the publisher. This copyright expires automatically when editor decided not to publish the paper or accept withdrawing it – only in such case authors are free to send this paper to other journal.

3. In citations of our papers published in Przegląd Elektrotechniczny we will use the full name of the journal: Przegląd Elektrotechniczny (not English translation)

4. Full data of all authors (name, surname, e-mail address, affiliation):
 - Nur HAMZAH, nur_hamzah@poliupg.ac.id, State Polytechnic of Ujung Pandang, Indonesia
 - Firman FIRMAN, firman@poliupg.ac.id, State Polytechnic of Ujung Pandang, Indonesia
 - Muhammad Ruswandi DJALAL, wandi@poliupg.ac.id, State Polytechnic of Ujung Pandang, Indonesia

5. Data of corresponding author (name, surname, e-mail address):
 - Nur HAMZAH, nur_hamzah@poliupg.ac.id, State Polytechnic of Ujung Pandang, Indonesia

7. In the case of acceptance of our paper we declare to cover cost of printing according to information on www page red.pe.org.pl. Data for invoice (name and address) are as follows:
 Muhammad Ruswandi DJALAL, Perintis Kemerdekaan 7 Green Harmony Residence C/2, Makassar, Indonesia

6. Suggestion of reviewers related to this work with related publications that they should be from other institutes (filling this is compulsory - 3 proposals).
 Please take into account that finding reviewers is the main obstacle in fast paper publishing. Therefore please help editor to find reviewers – from our practice we know that the authors of the papers published in PE are the best solution, among these Polish authors are most easy to motivate.
 - Assoc. Prof. Dr. Tole Sutikno, e-mail: tole@journal.uad.ac.id, Electrical Engineering Department, Ahmad Dahlan University, Indonesia
 - Dr. Nelly Safitri, e-mail: nellysaftri@pnl.ac.id, State Polytechnic of Lhokseumawe, Indonesia
 - Dr. jasrul jamani, e-mail: jasrul@fke.utm.my, University Technology Malaysia, Malaysia
7. Very important are citations of the papers published in PE. The most valuable are of course citations in journals of JCR next in other journals. Less valuable are citations of papers PE in PE (autocitations) – although also such citations are important. Authors who proved that they cited our journal can expect special treatment by submission of the paper. Therefore please list below examples of:

- citations of PE by the authors,

- citations of the authors in reputable journals.
Abstract. Installation of Rooftop Solar Panels currently only considers the power capacity to be installed and the available roof area, but does not consider the type of roofing material where the solar panels are installed. The roof of the house has the absorption of sunlight and different thermal properties depending on the type of roofing material. In this study, discusses the effect of using house roofing materials on the performance of solar panels. In this study, 2 types of roofing materials were used, namely Asbestos Roof and Spandex Roof. In addition, this study discusses the effect of the height between the solar panels and the roof on the temperature and its effect on the efficiency of the solar panels. Based on this research, the temperature characteristics between the solar panels and the roof (T3) of various types of materials affect the efficiency value of the solar panels, where the maximum efficiency value is obtained for asbestos roofing material at a temperature (T3) of 35.56°C of 5.35% and spandex roofing, at a temperature of (T3) 35.16°C of 4.53%.

Keywords: Solar Panel, Rooftop, Asbestos Roof, Spandex Roof, Efficiency.

Streszczenie. Instalacja dachowych paneli słonecznych obecnie uwzględnia tylko moc do zainstalowania i dostępną powierzchnię dachu, ale nie bierze pod uwagę rodzaju pokrycia dachowego, na którym są zainstalowane panele słoneczne. Dach domu charakteryzuje się pochłanianiem światła słonecznego i różnymi właściwościami termicznymi w zależności od rodzaju pokrycia dachowego. W niniejszym opracowaniu omówiono wpływ zastosowania pokryć dachowych domu na wydajność paneli słonecznych. W niniejszym badaniu zastosowano 2 rodzaje pokryć dachowych, a mianowicie dach azbestowy i dach spandexowy. Ponadto w niniejszym opracowaniu omówiono wpływ wysokości między panelami słonecznymi a dachem na temperaturę i jej wpływ na wydajność paneli słonecznych. Na podstawie tych badań charakterystyka temperaturowa pomiędzy panelami słonecznymi a dachem (T3) z różnych rodzajów materiałów wpływa na wartość sprawności paneli słonecznych, gdzie maksymalna wartość sprawności jest uzyskiwana dla pokrycia dachowego z azbestu w temperaturze (T3) 35.56°C 5.35% i pokrycie dachowe ze spandexu. w temperaturze (T3) 35.16°C 4.53%.

Słowa kluczowe: panel słoneczny, dach, dach azbestowy, dach z elastanu, wydajność.

1. Introduction

Solar energy is a renewable energy that can be used as an alternative energy source. The use of solar energy can meet some of the electrical energy needs in Indonesia. Indonesia’s geographical location supports the availability of solar energy throughout the year. The application of solar power plants is very suitable for remote areas that are difficult to reach by a centralized power grid [1].

One application of photovoltaic solar energy technology that is currently being developed is the technology of Solar Power Generation on the roof of the building or rooftop solar cell. Rooftop solar cell technology is a reliable solution for energy supply [2]. The advantages of roof solar panels are that they are easy and inexpensive to integrate with existing electrical systems, and can reduce the load on the system network. In addition, the application of this system is easy to maintain and operate, and has a significant impact in reducing pollution and the greenhouse effect [3].

The potential of solar energy today in Indonesia is very large [4]. Several studies have discussed the use of rooftop PV panel technology, among others [5] discussing the application of rooftop solar power plants in campus buildings. [6] has investigated the design of off-grid solar panel roofs in residential homes as an alternative source of electrical energy. [7] discusses strategies for the application of solar cells for residential and commercial buildings. [8] discusses the application of rooftop solar power generation to reduce electricity consumption during peak load conditions. The application of roof PV panels in buildings has been proposed by many researchers [9-11]. The review papers about solar tracking system [12], solar PV cleaning technology [13]. Solar photovoltaic system cooling technology [14] have been documented. The application of control and optimization technology to solar cells has also been developed by many researchers such as PSO-PR Power flow Control [15], grid-connected SmartInverter control [16] and Grid-Connected PV Inverter control using Discrete-Time Integral Variable Structure [17].

Installation of roof solar panels currently only considers the power capacity to be installed [18], and the available roof area. However, it does not consider the type of roofing material where the PV is installed. While the roof of the house has the characteristics of absorption of sunlight and different thermal properties depending on the type of roofing material. Several previous studies have been conducted to determine the effect of temperature on the roof covering including [19], [20], and [21], which have investigated the thermal conditions of the roof space produced from various types of roofing materials such as tile, asbestos and zinc. The results of this study indicate that the average temperature of the roof space on roof tiles is 1.91°C to 2.31°C, lower than that of asbestos and zinc roofs. Tile roofs can withstand solar radiation better. The average surface temperature of the tile roof was 0.28°C lower than the surface temperature of the asbestos roof and 1.55°C lower than the surface temperature of the zinc roof. However, the lowest average roof surface temperature profile during the day on an asbestos roof is 38.71°C. [20] have discussed the manufacture and testing of tools for determining the conductivity of zinc, multiorf, and asbestos plates. The results showed that the highest conductivity value was found in the zinc plate (0.482 W/m°C), and the lowest conductivity value was found in the multi-roof (0.132 W/m°C). [21] discussed the effect of Solar Photovoltaic Panels on Roof Heat Transfer [21] where the roof temperature under PV is 2.5 times more relaxing than the roof exposed to the sun.
In [22] discusses the thermal characteristics of the installation of roof PV panels. Several other previous studies discussed the effect of the type of roofing material used as a place to install roof PV panels on the temperature between the solar panels and the roof, and have not studied the effect of the distance between the solar panels and the type of roof. Then the material about the temperature of the solar panel and its impact on the efficiency of the solar panel has not been discussed. This experiment was conducted to obtain the characteristics of the I-V curve and the efficiency of solar panels mounted on roofs made of asbestos and spandex roofing materials. In this study, the height of the solar panels on the roof was varied at 20, 25, 30 and 35 cm.

2. Methods
II.1. Research Instrument Design
For the solar panel mount frame, hollow iron material measuring 4 x 4 cm is used and also angled iron measuring 3 x 3 cm. Acrylic material is used for the material on the load panel. Figure 1 below shows the design of the solar panel frame and roof.

![Fig 1. (a). Solar Panel Mount Design, (b). Tile Mount Design, (c) Dimensions of Solar Panel and Roof Frame](image)

In designing the load panel as the output of the solar panel, the acrylic material is used with a size of 75 x 60 cm. The following figure 2 shows the research instrument placement design.

![Fig 2. Research Instrument Placement Design](image)

Information:
1. Solar Panel Mount
2. Place Solar Simulator
3. Temperature over solar panel, T_1 (°C)
4. Temperature under solar panel, T_2 (°C)
5. Temperature between solar panel and roof, T_3 (°C)
6. Temperature on the roof, T_4 (°C)
7. Temperature under the roof, T_5 (°C)
8. Distance Variation Controller (cm)
9. Roof Mount
10. Tilt Angle (°)

![Fig 3. Data Retrieval Process](image)

2.1. Testing Procedure
After the process of manufacturing and installing the research components is complete, it is followed by the testing procedure. The steps in the testing procedure are as follows:
1. The test will be carried out at 09.00 until 15.00 local time.
2. Adjust the angle of the solar panels based on the type of roof used.
3. Installing solar panels on the roof material with a distance of H_1.
4. Measure the distance (cm) between solar panels and the roof being used.
5. Take temperature measurements on top of the solar panel (°C) and the temperature between the solar panel and the roof (°C) using the TC-08 Thermocouple Data Logger.
6. Measuring the amount of solar radiation (W / m²) on a solar panel using a Solar Power Meter SPM-1116SD measuring instrument.
7. Connect the solar panel output to the load panel and turn the toggle switch ON.
8. Connect a Datalogger Voltmeter and Ammeter with a laptop to observe the amount of current and voltage on the solar panel.
To ensure that the datalogger and measurement instruments on the load panel are functioning correctly, it can be determined by turning ON the switch on the lamp, then increasing the voltage by turning the potentiometer, in this case, the dimmer to its top condition. The brightness of the lamp will be directly proportional to the amount of current and voltage and the intensity of the sun received by the solar panel. After all, measuring instruments are functioning correctly, then data retrieval can be carried out.

9. Procedure 1 to 9 is repeated with H2 and H3 intervals.
10. Procedures 1 to 10 are repeated for asbestos roof and spandex roof.

Fig 4. Schematic of PLTS Rooftop

3. Results and Discussion

The research data contains solar panel parameters measured on different types of roofing materials, namely Asbestos Roof and Spandex Roof. For every kind of roof, the measurement data is also detailed in the various sizes of solar panels and roof distances, covering a distance of 35 cm, 30 cm, 25 cm, and 20 cm. In the variation of length, the research was conducted at 3 (three) observation times, namely at 09.30 WITA, 12.30 WITA, and 14.30 WITA.

The measurement data needed in this study include:
- Solar radiation, G_{bt} (W/m²)
- Temperature over solar panels, T_1 (°C)
- Temperature under solar panel, T_2 (°C)
- Temperature between solar panel and roof, T_3 (°C)
- Temperature on the roof, T_4 (°C)
- Temperature under the roof, T_5 (°C)
- Solar panel current, I (A)
- Solar panel voltage, V (V)
- Time, (WITA)

The following is research data from each of the above categories, which is taken from the average value of the measurement results.

3.1. Characteristics of I-V on Asbestos Roof

Figure 5 shows the characteristics of the I-V curve with various variations in the distance of the solar panels on Asbestos Roof for the first experiment. In this graph, it can be seen that the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the more significant the voltage, the smaller the current. This is influenced by the resistive load (shear resistance) used in this experiment which is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and Asbestos Roof. It appears that the largest voltage value is obtained at a distance of 30 cm, which is 22.75 V with a current value of 0.27 A.

Figure 6 shows the characteristics of the I-V curve with variations in the distance of the solar panels on the asbestos roof for the second experiment. From this second experiment, the current and voltage characteristics are almost the same as the first experiment, namely the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. The effect is the same as in the first experiment, which is influenced by the resistive load used in this experiment, where the load is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. In this second experiment, the voltage values for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm tend to be constant following changes in the value of the shear resistance. Compared to other distances, the minimum current and voltage characteristics are shown at a distance of 20 cm, this is due to the effect of convection heat transfer between solar panels and asbestos roof at a distance of 20 cm is greater because this experiment is carried out when solar radiation is at its maximum value (daylight). The largest value in this second experiment was obtained at a distance of 35 cm with a value of 23.24 V with a current of 0.26 A.
3.2. Characteristics of I-V on Spandex Roof

To compare the performance of the previous experiment with asbestos roofs, the second experiment used spandex roofs. Figure 8 shows the characteristics of the I-V curve with various variations in the distance of the solar panels on the spandex roof for the first experiment. The same thing is also obtained in this test, where the maximum to minimum load variation of the resistive load causes the voltage generated by the solar panel to be inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. This is also influenced by the resistive load used where the load is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. In this second experiment, the voltage value for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm obtained is almost the same as the previous test, which tends to be constant following changes in the value of the shear resistance. The largest value is obtained at a distance of 35 cm with a value of 23.61 V with a current of 0.23 A.

Fig 7. Characteristics of I-V Curves with Variations of Solar Panel Spacing on Asbestos Roof for the Third Experiment

While in Figure 7 is a characteristic I-V curve with various variations in the distance of the solar panels on the asbestos tile for the third experiment. The third experiment shows the same trend as the previous experiment, where the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. This is because the effect of the resistive load used in this experiment is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. The graph above shows that the voltage values for each variation with a distance of 35 cm, 30 cm, and 22 cm tend to be constant following changes in the value of the shear resistance. However, at a distance of 20 cm the graph trend appears to be fluctuating where the change in the current value is quite large at a voltage of 18.26 V. The largest value is obtained at a distance of 35 cm with a value of 22.01 V with a current of 0.21 A.

Fig 8. Characteristics of I-V Curves with Various Spacing of Solar Panels on Spandex Roof for the First Experiment

The next test in the second experiment with a spandek roof is shown in Figure 9, the characteristics of the I-V curve with various variations in the distance of the solar panels on the spandek roof. From this second test, it shows the same trend as the previous experiment, where the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. This is because the effect of the resistive load used where the load is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. In this second experiment, the voltage value for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm obtained is almost the same as the previous test, which tends to be constant following changes in the value of the shear resistance. The largest value is obtained at a distance of 35 cm with a value of 23.05 V with a current of 0.30 A.

Fig 9. Characteristics of I-V Curves with Various Spacing of Solar Panels on Spandex Roof for the Second Experiment
roofing materials showed that at a distance of 35 cm the highest T3 temperature in tests using asbestos roofing materials was obtained in tests conducted at 09.30 WITA, which was around 33.3°C. Furthermore, in the test with a distance of 30 cm, the highest T3 temperature was found in the test conducted at 14.30 WITA which was around 32.8°C. Furthermore, in the test with a distance of 25 cm, the highest T3 temperature was found in the test conducted at 14.30 WITA which was around 32.4°C. Furthermore, in the test with a distance of 20 cm, the highest T3 temperature was found in the test carried out at 09.30 WITA which was around 33.2°C. Table 1 shows the results of testing the characteristics of solar panels on Asbestos Roofs.

Table I. Comparison of Temperature Characteristics of Asbestos Roof

<table>
<thead>
<tr>
<th>Distance (cm)</th>
<th>Time (WITA)</th>
<th>(G_m) (W/m²)</th>
<th>(T_1) (°C)</th>
<th>(T_2) (°C)</th>
<th>(T_3) (°C)</th>
<th>(T_4) (°C)</th>
<th>(T_5) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>783.3</td>
<td>56.01</td>
<td>47.88</td>
<td>30.18</td>
<td>35.16</td>
<td>33.85</td>
</tr>
<tr>
<td>14.30</td>
<td>957.9</td>
<td>56.02</td>
<td>49.41</td>
<td>35.80</td>
<td>37.51</td>
<td>34.82</td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>776</td>
<td>57.42</td>
<td>54.35</td>
<td>34.14</td>
<td>38.29</td>
<td>37.07</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>797.9</td>
<td>50.46</td>
<td>43.56</td>
<td>35.67</td>
<td>34.55</td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>1069</td>
<td>49.98</td>
<td>46.00</td>
<td>31.51</td>
<td>37.74</td>
<td>35.25</td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>755.3</td>
<td>58.51</td>
<td>57.06</td>
<td>36.82</td>
<td>40.02</td>
<td>36.55</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>826.2</td>
<td>61.95</td>
<td>48.44</td>
<td>36.08</td>
<td>33.34</td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>1039</td>
<td>56.36</td>
<td>55.65</td>
<td>35.51</td>
<td>39.20</td>
<td>36.45</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>726.7</td>
<td>60.13</td>
<td>58.40</td>
<td>37.67</td>
<td>42.11</td>
<td>40.70</td>
</tr>
<tr>
<td>14.30</td>
<td>847.3</td>
<td>58.96</td>
<td>54.12</td>
<td>34.39</td>
<td>37.48</td>
<td>35.56</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12.30</td>
<td>1064</td>
<td>53.79</td>
<td>51.47</td>
<td>35.59</td>
<td>38.71</td>
<td>37.67</td>
</tr>
<tr>
<td>20</td>
<td>14.30</td>
<td>724.2</td>
<td>58.96</td>
<td>56.72</td>
<td>35.62</td>
<td>41.32</td>
<td>39.09</td>
</tr>
</tbody>
</table>

The next temperature characteristic test is for the Spandex Roof material, with several variations of distance. In testing the type of spandex roof material, it shows that at a distance of 35 cm the highest T3 temperature in the test using the Spandex Roof material was obtained in the test conducted at 12.30 WITA which is around 35.80°C. Furthermore, in the test with a distance of 30 cm, the highest T3 temperature was found in the test carried out at 14.30 WITA which was around 36.82°C. Furthermore, in the test with a distance of 25 cm, the highest T3 temperature was found in the test carried out at 14.30 WITA around 37.67°C. Furthermore, in the test with a distance of 20 cm, the highest T3 temperature was found in the test carried out at 14.30 WITA which was around 35.62°C. Table 2 shows the results of testing the characteristics of solar panels on the Spandex Roof.

Table II. Comparison of Temperature Characteristics of Spandex Roof

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>(G_m) (W/m²)</th>
<th>(I) (A)</th>
<th>(T_1) (°C)</th>
<th>(T_2) (°C)</th>
<th>(T_3) (°C)</th>
<th>(T_4) (°C)</th>
<th>(T_5) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>783.3</td>
<td>56.01</td>
<td>47.88</td>
<td>30.18</td>
<td>35.16</td>
<td>33.85</td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>957.9</td>
<td>56.02</td>
<td>49.41</td>
<td>35.80</td>
<td>37.51</td>
<td>34.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>776</td>
<td>57.42</td>
<td>54.35</td>
<td>34.14</td>
<td>38.29</td>
<td>37.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>797.9</td>
<td>50.46</td>
<td>43.56</td>
<td>35.67</td>
<td>34.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>1069</td>
<td>49.98</td>
<td>46.00</td>
<td>31.51</td>
<td>37.74</td>
<td>35.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>755.3</td>
<td>58.51</td>
<td>57.06</td>
<td>36.82</td>
<td>40.02</td>
<td>36.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>826.2</td>
<td>61.95</td>
<td>48.44</td>
<td>36.08</td>
<td>33.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>1039</td>
<td>56.36</td>
<td>55.65</td>
<td>35.51</td>
<td>39.20</td>
<td>36.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>726.7</td>
<td>60.13</td>
<td>58.40</td>
<td>37.67</td>
<td>42.11</td>
<td>40.70</td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>847.3</td>
<td>58.96</td>
<td>54.12</td>
<td>34.39</td>
<td>37.48</td>
<td>35.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12.30</td>
<td>1064</td>
<td>53.79</td>
<td>51.47</td>
<td>35.59</td>
<td>38.71</td>
<td>37.67</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>14.30</td>
<td>724.2</td>
<td>58.96</td>
<td>56.72</td>
<td>35.62</td>
<td>41.32</td>
<td>39.09</td>
<td></td>
</tr>
</tbody>
</table>
Testing the temperature characteristics of solar panels on the Asbestos Roof shows a graph of a temperature trend that fluctuates from 09.30 to 14.30. Meanwhile, in the Spandex Roof material test, the temperature chart trend increased from 09.30 to 14.30. From the results of testing with asbestos roofs, the temperature values fluctuate, this is because this roof is a poor conductor so that heat from the roofing material will be difficult to transfer to the top of the solar panel.

For example, at 12.30 WITA, the highest T3 temperature was produced using spandex roofing material. This is because spandek roofs are good conductors so that during the day, conduction heat transfer will be greater so that the temperature between the solar panels and the roof is also large. Based on graph 10, it can be seen that spandek roof is the material that has the highest temperature of 35.80 °C in the test conducted at 12.30 WITA.

3.4. Solar Panel Efficiency Comparison

For efficiency analysis, calculations are carried out by taking the sample data in Table 1 (on asbestos roof with a distance of 35 cm at 09.30 WITA). The parameters are as follows:

- The intensity of solar radiation, \(G_{ir} = 783.3 \text{ W/m}^2 \)
- Voltage, \(V = 17.11 \text{ V} \)
- Current, \(I = 0.92 \text{ A} \)
- Cross-sectional area, \(A = 0.538 \times 0.636 = 0.342 \text{ m}^2 \)
- Temperature on top of the solar panels, \(T_1 = 56.01 \text{ °C} \)
- Temperature under solar panels, \(T_2 = 47.86 \text{ °C} \)
- Temperature between solar panels and roof, \(T_3 = 30.18 \text{ °C} \)
- Temperature on the roof, \(T_4 = 35.16 \text{ °C} \)
- Temperature under the roof, \(T_5 = 33.85 \text{ °C} \)
- Time = 9.30 WITA

The following is the complete calculation of input power, output power, and solar panel efficiency shown in table 3 for asbestos roof material types and table 4 for ceramic tile materials.

Table 3. Power and Efficiency of Solar Panel on Asbestos Roof

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>(G_{ir}) (W/m(^2))</th>
<th>(V) (V)</th>
<th>(I) (A)</th>
<th>(P_{in}) (W)</th>
<th>(P_{out}) (W)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>484.4</td>
<td>16.66</td>
<td>0.54</td>
<td>8.79</td>
<td>165.74</td>
<td>5.35</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1088</td>
<td>20.32</td>
<td>0.81</td>
<td>12.18</td>
<td>372.17</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>688.7</td>
<td>19.70</td>
<td>0.52</td>
<td>8.13</td>
<td>235.66</td>
<td>3.44</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>599.3</td>
<td>16.49</td>
<td>0.55</td>
<td>8.30</td>
<td>205.06</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1036</td>
<td>18.78</td>
<td>0.81</td>
<td>9.40</td>
<td>361.18</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>676.8</td>
<td>20.03</td>
<td>0.59</td>
<td>9.59</td>
<td>231.56</td>
<td>4.14</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>556.4</td>
<td>18.47</td>
<td>0.64</td>
<td>10.06</td>
<td>190.39</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1035</td>
<td>19.50</td>
<td>0.74</td>
<td>10.92</td>
<td>354.28</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>618.5</td>
<td>20.03</td>
<td>0.49</td>
<td>8.04</td>
<td>233.17</td>
<td>3.45</td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>512.8</td>
<td>17.01</td>
<td>0.68</td>
<td>8.79</td>
<td>175.45</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1048</td>
<td>20.06</td>
<td>0.64</td>
<td>10.02</td>
<td>358.57</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>691.5</td>
<td>19.79</td>
<td>0.51</td>
<td>8.34</td>
<td>236.62</td>
<td>3.53</td>
</tr>
</tbody>
</table>

Table 4. Power and Efficiency of Solar Panel on Spandex Roof

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>(G_{ir}) (W/m(^2))</th>
<th>(V) (V)</th>
<th>(I) (A)</th>
<th>(P_{in}) (W)</th>
<th>(P_{out}) (W)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>763.3</td>
<td>17.11</td>
<td>0.92</td>
<td>12.13</td>
<td>317.22</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>779.9</td>
<td>21.27</td>
<td>0.66</td>
<td>12.03</td>
<td>387.98</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>776.8</td>
<td>19.92</td>
<td>0.65</td>
<td>11.04</td>
<td>314.29</td>
<td>3.51</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>797.9</td>
<td>19.15</td>
<td>0.63</td>
<td>8.80</td>
<td>323.17</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1069</td>
<td>21.46</td>
<td>0.66</td>
<td>12.22</td>
<td>432.82</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>759.3</td>
<td>20.28</td>
<td>0.53</td>
<td>9.18</td>
<td>305.91</td>
<td>3.00</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>826.2</td>
<td>19.13</td>
<td>0.66</td>
<td>10.15</td>
<td>334.60</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1039</td>
<td>20.85</td>
<td>0.69</td>
<td>12.53</td>
<td>420.94</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>726.7</td>
<td>19.35</td>
<td>0.67</td>
<td>10.99</td>
<td>294.31</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1064</td>
<td>22.25</td>
<td>0.49</td>
<td>9.29</td>
<td>431.04</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>724.2</td>
<td>19.66</td>
<td>0.53</td>
<td>8.48</td>
<td>293.29</td>
<td>2.89</td>
</tr>
</tbody>
</table>

Based on Figure 12, it shows a comparison of efficiency for a height of 35 cm on the types of asbestos and spandex roofing materials. In the graph for testing the asbestos roofing material, it can be seen that the efficiency of the solar panel (\(\eta \)) in the test carried out at 09.30 WITA looks greater than the test carried out at 12.30 WITA, then
tends to be constant and does not experience too significant changes in the test carried out at 12.30 WITA. The highest efficiency value was obtained from asbestos roofing material with a test time of 09.30 WITA of 5.35%. Meanwhile, the lowest efficiency value was obtained from the spandex roof testing with the testing time at 12.30 WITA, namely 2.98%. While at a height of 30 cm, the highest efficiency value in the asbestos roof testing at 09.30 WITA was 4.52%. Meanwhile, the lowest efficiency value was obtained from the asbestos roof testing with the testing time at 12.30 WITA which is 2.60%. Meanwhile, at a height of 25 cm, the highest efficiency value obtained by asbestos roofing material was 5.27% at the time of testing at 09.30 WITA. Meanwhile, the lowest efficiency value was obtained from the spandex roof test with the testing time at 12.30 WITA, namely 2.96%. While at a height of 20 cm, the highest efficiency value obtained on the type of asbestos roofing material was 4.94% at the time of testing at 09.30 WITA. While the lowest efficiency value was obtained in the spandek roof test with the testing time at 12.30 WITA which is 2.26%.

The efficiency value in this experiment is influenced by the measured value of solar radiation and temperature based on variations in height between the roof and solar panels. Other factors that affect the efficiency of solar panels in this study such as wind speed and reflectance of sunlight from roofing materials to solar panels are assumed not to have much effect on this experiment because the test framework (solar panels and roofs) are not placed on tall buildings so that the factor these factors are ignored. The weather conditions are based on BMKG sources in the data collection process for asbestos roofs in the morning the conditions are cloudy, sunny in the afternoon, and the temperature is between 23 - 32˚C and humidity is 60-85%. Meanwhile, the weather conditions in the data collection process for spandek roofs were cloudy in the morning, cloudy in the afternoon, and the temperature was between 27 - 31˚C.

Fig 12. Comparison of the Efficiency of Solar Panels

4. Conclusion
Based on the research that has been done, it can be concluded that:
1. Based on this research, the temperature characteristics between the solar panel and the roof (T3) of various types of material have an influence on the efficiency value of the solar panel, where the maximum efficiency value of the solar panel is obtained for the type of material:
 a. Asbestos roof at a temperature (T3) of 35.56˚C, with a maximum efficiency value of 5.35% with sunny cloudy weather conditions.
 b. Spandek roof at a temperature (T3) of 35.16˚C, with a maximum efficiency value of 4.53% with sunny cloudy weather conditions.
2. Based on the results of data observations in this study, the optimal distance between the solar panels and the roof was obtained, for the maximum efficiency value, namely: asbestos roof with a distance of 35 cm, and spandek roof with a distance of 35 cm.

REFERENCES

[19] E. Selparia, M. Ginting, and R. Syech, "Manufacture and testing of tools to determine the conductivity of zinc plate, multiroof and asbestos," Riau University".

Authors' information

1. Firman Firman was born in Wajo, on March 11, 1964. He obtained his bachelor degree from Hasanuddin University, Makassar (Indonesia) in 1989 majoring Mechanical Engineering. Then, he finished his master degree from Sepuluh Nopember Institute of Technology, (Surabaya, Indonesia) in 2003 in the field of Mechanical Engineering. His research is mainly in Cooling Engineering, Fluid Mechanics, Thermodynamics Engineering, and Energy Management. He is currently a lecturer in the Department of Energy Power Plant, State Polytechnic of Ujung Pandang.

2. Nur Hamzah was born in Makassar, on November 11, 1963. He obtained his bachelor degree from Hasanuddin University, Makassar (Indonesia) in 1989 majoring Mechanical Engineering. Then, he finished his master degree from Sepuluh Nopember Institute of Technology Malaysia (UTM) in 2018 in the field of Thermo Fluid. His research is mainly in Thermo Fluid, Renewable Energy, and Energy Management. He is currently a lecturer in the Department of Energy Power Plant and the Head of Energy Conversion Laboratory, State Polytechnic of Ujung Pandang.

3. Muhammad Ruswandi Djialal was born in Ujung Pandang, on march 11, 1990. He obtained his bachelor degree from State Polytechnic of Ujung Pandang (Makassar, Indonesia) in 2012 majoring Energy Engineering. Then, he finished his master degree from Sepuluh Nopember Institute of Technology, (Surabaya, Indonesia) in 2015 in the field of Electrical Engineering. His research is mainly in Power System Stability, Renewable Energy, and Artificial Intelligent. He is currently a lecturer in the Department of Energy Conversion, State Polytechnic of Ujung Pandang.
Best regards

Slawomir Tumanski
Professor

Przeglad Elektrotechniczny (Electrical Review)
Editor in Chief
ul. Ratuszowa 11
00-950 Warszawa
e-mail: red.pe@sigma-not.pl
www.red.pe.org.pl

tel (mobile): 48 693 428 056
tel. (private): 48 22 711 0303
e-mail: tumanski@tumanski.pl

Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>
To: Nur Hamzah Said <nurhamzah.said@gmail.com>

Muhammad Ruswandi Djalal
S.ST. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

-------- Forwarded message --------
From: ST <tumanski@tumanski.pl>
Date: Tue, Apr 11, 2023 at 4:13 PM
Subject: RE: Paper Submission
To: Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>

Invoice of paper 7040 enclosed.

You can pay by bank transfer or by credit card.
Manuscript reference: 7040
Author
Title:

Solar Panels Performance on Asbestos Roof and Spandex Roof Material

Please indicate mark from 0 to 10.

1. Does the paper represent an original contribution to the field of interest of electrical engineering: yes
2. Is the paper of good scientific quality and free from obvious errors: yes
3. Is the paper clear, concise and well organized: yes
4. Do the authors place the paper in proper context by citing previous relevant papers: yes
5. Does the abstract adequately summarize the work and the main conclusions: yes
6. Are figures and tables clear and relevant and captions adequate: yes

7. Is the paper written in correct English: yes

8. Are the conclusions supported by experimental evidence, computed results or prior publications: yes

9. To what extent is the material in the paper likely to be of interest by other researcher in the field
 a. Very Much:
 b. **Much:**
 c. Average:
 d. Little:
 e. Never:

10. Recommendation
 a. **Accept as it is**
 b. Accept with minor changes
 c. Accept subject to required revision
 d. Do not publish
Please put additional remarks on the next page. Comments are strongly encouraged.

Referee (only for the editor knowledge):

Are asbestos roofs permitted?
We recommend payments by credit cards using new possibility to pay by PayPal service because this way we receive the payment immediately.

To pay by this way please send us e-mail address and PayPal will contact with you on this address to help to pay. You can pay using your PayPal account (you can open such account in a few second free of charge) or you can pay without PayPal account as a guest.

PayPal account is: red.pe@sigma-not.pl

You can also pay by bank transfer.

Important: if you pay by bank transfer always!!!! Send information about number of invoice PEL... because it is a method of identification of the payment.

Best regards

Slawomir Tumanski
Professor

Warsaw University of Technology
IETISIP
ul. Koszykowa 75
00-661 Warszawa

tel (mobile): 48 693 428 056
tel. (private): 48 22 711 0303
e-mail tumanski@tumanski.x.pl

Przegląd Elektrotechniczny (Electrical Review)
Editor in Chief
ul. Ratuszowa 11
00-950 Warszawa
e-mail: red.pe@sigma-not.pl
www.red.pe.org.pl

From: Muhammad Ruswandi Djalal Jurusan Teknik Mesin [mailto:wandi@poliupg.ac.id]

Sent: Sunday, March 26, 2023 12:56 AM

To: tumanski@tumanski.pl

Subject: Re: Paper Submission

Dear Prof Tumanski

Attached is the final paper. We are waiting for the invoice.

Thanks
Dear Prof,

We are very happy to hear that our paper entitled 'Solar Panels Performance on Asbestos Roof and Spandex Roof Material' (Number of Paper : PE7040 and number of Invoice : PEL/125/VT/23) has been accepted by Przeglad Elekrochniczny Journal.

We have paid a fee for PE7040 245 EUR

Sender's Reference : S10MKS00029923
Ordering customer : 0000 0000 6565 4798
Ordering Institution : BNINIDJAXXX
Bank Name : PT. Bank Negara Indonesia
Paid In Pull : April 13, 2023

What issue will our articles be published??

Thanks you for your attention

Muhammad Ruswandi Djalal
S.ST. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

Best Regards
INVOICE

Nr PEL/125/VT/23

2023-04-11 Warszawa
Invoice Date

2023-04-05
Sale Date

Druk: Sage Symfonia Start 2.0 Faktura 2017.e

Seller/ Sprzedawca: Wydawnictwo SIGMA-NOT sp. z.o.o.
Adres: 03-450 Warszawa, ul. Ratuszowa 11
NIP: 5240303501

Bill to/ Nabywca: State Polytechnic of Ujung Pandang
Adres: 90245 Makassar Indonesia

Payment method: przelew
Bank: PKO BP IV Oddział Warszawa
Konto: 10 1020 1042 0000 8202 0514 8095
IBAN PL 10 1020 1042 0000 8202 0514 8095
SWIFT CODE: BPKOPLPW
Currency: EUR
Exchange Rate: 4,686200

No	**Description**	**PKWIU**	**Qua.**	**Unit**	**Tax**	**Unit price EUR**	**Total price EUR**
1 | The elaboration and publication of te paper no 7040, Ruswandi Djalal, 7 pages... | | 1 | szt | NP | 245,00 | 245,00

Total | **245,00 EUR**

Pozostało do zapłaty: 245,00 EUR

Odwrotne obciążenie / Reverse charge

Słownie: dwieście czterdzieści pięć EUR zero setnych

W sumie rabat	**netto**
0,00% | 0,00

imię, nazwisko i podpis osoby upoważnionej do odebrania dokumentu
Wystawił(a): Slawomir Tumanski

Druk: Sage Symfonia Start 2.0 Faktura 2017.e
strona 1
On Tue, Apr 11, 2023 at 4:24 PM Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id> wrote:

[Quoted text hidden]

--- Forwarded message ---
From: Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>
Date: Tue, Apr 25, 2023 at 6:15 AM
Subject: Re: Paper Submission
To: <tumanski@tumanski.pl>

Dear Prof

We have already made the payment. How is the progress of our article, in what edition?

Best Regards
Thank you

Muhammad Ruswandi Djalal
S.T. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

======================================

On Sun, Apr 23, 2023 at 8:06 AM Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id> wrote:

Dear Prof

We have already made the payment. How is the progress of our article, in what edition?

Best Regards
Thank you

Muhammad Ruswandi Djalal
S.T. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

======================================

https://mail.google.com/mail/u/0/?ik=bb215ff1ee&view=pt&search=all&permthid=thread-f:1767114860786067741&simplesubmit=msg-f:1767114860786067741
REFERENCE: S10MK00029923

NO. TRX.: 81189 967236 96962 TRAN 13/04/2023 10:52:02
NO. REK.: 000000065654798
JUMLAH: IDR 530,090- 1568
007 - MAKASAR

NO. TRX.: 81189 967236 96962 TRAN 13/04/2023 10:52:02
NO. REK.: 007360420801001 PENDAPATAN PROPISI KU
JUMLAH: IDR 35,000 1568
007 - MAKASAR

NO. TRX.: 81189 967236 96962 TRAN 13/04/2023 10:52:02
NO. REK.: 007360482010001 Pendapatan Restitusi B
JUMLAH: IDR 495,090 1568
007 - MAKASAR

NO. TRX.: 81189 967236 96962 TRAN 13/04/2023 10:52:02
NO. REK.: 000000065654798
JUMLAH: IDR 4,043,235- 1568
007 - MAKASAR

NO. TRX.: 81189 967236 96962 TRAN 13/04/2023 10:52:02
NO. REK.: 007333200101001 KU YAKIR EUR
JUMLAH: EUR 245 1568
007 - MAKASAR

PT. BANK NAGARI INDONESIA (PTBN)
MAKASAR
PT. BANK NEGARA INDONESIA (Persero), Tbk
CABANG : MAKASAR

IBOC - Maintenance (S10)

Teller ID : 81189
Date : 13/04/2023
Time : 10:56:48

Sender's Reference:
:20:S10MKSO00029923
Bank Operation Code:
:23B:CRED
Value Date/Currency/Interbank Settled Amount:
:32A:230413EUR245,
Ordering Customer:
:50K:/0000000065654798
BPK NUR HAMZAH SAID
BTN WESABBE BLOK C NO 44
MAKASSAR
INDONESIA
Ordering Institution:
:52A:BNINIDJAXX
Account With Institution:
:57A:BPKOPLPXMM
Beneficiary Customer:
:59:/PL10102010420000820205148095
WYDAWNICTWO SIGMA NOT SP Z O O
03 450 WARSZAWA UL RATUSZOWA 11
POLANDIA
POLANDIA
Remittance Information:
:70:JOURNAL PAYMENT INVOICE PEL 125
Details Of Charges:
:71A:OUR
Sender to Receiver Information:
:72:/ACC/ /
/PL10102010420000820205148095
WYDAWNICTWO SIGMA NOT SP Z O O
03 450 WARSZAWA UL RATUSZOWA 11
POLANDIA
POLANDIA
Formulir Kiriman Uang
Remittance Application

<table>
<thead>
<tr>
<th>Penerima / Beneficiary</th>
<th>Penduduk / Resident</th>
<th>Bukan Penduduk / Non Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama / Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alamat / Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telepon / Phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kota / City</td>
<td>Negara / Country</td>
<td></td>
</tr>
<tr>
<td>Bank Penerima / Beneficiary Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kota / City</td>
<td>Negara / Country</td>
<td></td>
</tr>
<tr>
<td>No. Rek / Acc No.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pengirim / Remitter</th>
<th>Penduduk / Resident</th>
<th>Bukan Penduduk / Non Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama / Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nama Alias / Alias Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KTP / SIM / Passport / KITAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alamat / Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telepon / Phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kota / City</td>
<td>Negara / Country</td>
<td></td>
</tr>
</tbody>
</table>

|-----------------------------|--------------|--------------|-----------------------------|

<table>
<thead>
<tr>
<th>Mata Uang / Currency</th>
<th>IDR</th>
<th>USD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jumlah Dana yang dikirim / Amount Transfer</th>
<th>Jumlah / Amount</th>
<th>Kurs / Rate</th>
<th>Nilai / Total Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EUR</td>
<td>15568</td>
<td>15568</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biaya / Charge</th>
<th>Value / Amount In Foreign Exchange</th>
<th>Kurs / Amount</th>
<th>Nilai / Total Amount</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Komisi / Commission</th>
<th>Pengiriman / Handling</th>
<th>Bank Koresponden / Correspondent Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumlah Biaya / Amount Charge</th>
<th>Total yang dibayarkan / Total Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terbilang / Amount in Words</th>
</tr>
</thead>
</table>

Biaya dari bank koresponden dibebankan ke rekening / Correspondent bank charges are for account of:

- □ Penerima / Beneficiary
- □ Pengirim / Remitter
- □ Sharing

Setiap apa bahwa data komputer atau tanda tangan yang bersangkutan / The application for will be valid if there is a computerization validation or the authorized signature.

- Transaksi di lakukan melalui Customer (KWC) di atas Rp. 100.000 atau nilai yang setara digunakan in wash money must PAN (KYC) / Transaction by Wash in Customer amounting exceeds Rp. 100,000,000 or one hundred million rupiah / An exchange should value must (IA in the PAN (KYC) Form.

- Transaksi di lakukan pendukung di atas USD 10.000 atau ekivalen wajib mengisi form LDI / Transaction by non-resident amounting over US $ 10,000 or its equivalent must (IA in the LDI) Form.

Nama pengajuan tercantum pada halaman belakang / Name on the back of this form.

Saya menyatakan sepenuhnya syarat-syarat yang tercantum pada halaman belakang / I understand and agree with all the terms and conditions on the reverse form.
Best Regards
Thank you

Muhammad Ruswandi Djalal
S.T. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia
My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)
Phone: 085250986419

---------------- Forwarded message ----------------
From: ST <tumanski@tumanski.pl>
Date: Mon, May 1, 2023 at 2:10 AM
Subject: RE: Paper Submission
To: Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id>

We must wait for receiving the payment – after payment July issue.

Best regards

Slawomir Tumanski
Professor

Przegląd Elektrotechniczny (Electrical Review)
Editor in Chief
ul. Ratuszowa 11
00-950 Warszawa
e-mail: red.pe@sigma-not.pl
www.red.pe.org.pl

tel (mobile): 48 693 428 056
tel. (private): 48 22 711 0303
e-mail: tumanski@tumanski.pl

From: Muhammad Ruswandi Djalal Jurusan Teknik Mesin [mailto:wandi@poliupg.ac.id]
Sent: Sunday, April 30, 2023 3:54 PM
Dear Prof,

We have already made the payment. How is the progress of our article, in what edition?

Best Regards
Thank you

Muhammad Ruswandi Djalal
S.ST. (Energy Engineering), M.T. (Electrical Engineering)
State Polytechnic of Ujung Pandang
Makassar 90245, Indonesia

My Profile: (SCOPUS), (RG), (SINTA), (SCHOLAR), (ORCHID), (REPOSITORY)

Phone: 085250986419

On Thu, Apr 27, 2023 at 6:28 AM Muhammad Ruswandi Djalal Jurusan Teknik Mesin <wandi@poliupg.ac.id> wrote:

This is our journal payment PL125_23

Pada tanggal Kam, 27 Apr 2023 00.51, ST <tumanski@tumanski.pl> menulis:

We did not receive payement for 7040 yet.

[Quoted text hidden]
Paper 7040 enclosed.

[Quoted text hidden]
Performance of Solar Panels on Spandex and Asbestos Roofs

Abstract. Installation of Rooftop Solar Panels currently only considers the power capacity to be installed and the available roof area, but does not consider the type of roofing material where the solar panels are installed. The roof of the house has the absorption of sunlight and different thermal properties depending on the type of roofing material. In this study, discusses the effect of using house roofing materials on the performance of solar panels. In this study, 2 types of roofing materials were used, namely Asbestos Roof and Spandex Roof. In addition, this study discusses the effect of the height between the solar panels and the roof on the temperature and its effect on the efficiency of the solar panels. Based on this research, the temperature characteristics between the solar panels and the roof (T3) of various types of materials affect the efficiency value of the solar panels, where the maximum efficiency value is obtained for asbestos roofing material at a temperature (T3) of 35.56°C of 5.35% and spandex roofing, at a temperature of (T3) 35.16°C of 4.53%.

Streszczenie. Instalacja dachowych paneli słonecznych obecnie uwzględnia tylko moc do zainstalowania i dostępną powierzchnię dachu, ale nie bierze pod uwagę rodzaju pokrycia dachowego, na którym są zainstalowane panele słoneczne. Dach domu charakteryzuje się pochłanianiem światła słonecznego i różnymi właściwościami termicznymi w zależności od rodzaju pokrycia dachowego. W niniejszym opracowaniu omówiono wpływ zastosowania pokrycia dachowego na wydajność paneli słonecznych. W niniejszym badaniu zastosowano 2 rodzaje pokryć dachowych, a mianowicie dach azbestowy i dach spandexowy. Ponadto w niniejszym opracowaniu omówiono wpływ wysokości między panelami słonecznymi a dachem na temperaturę i jej wpływ na wydajność paneli słonecznych. Na podstawie tych badań charakteryfizuje się rozmach pomiarów w zależności od rodzaju pokrycia dachowego. W niniejszym badaniu zastosowano 2 rodzaje pokryć dachowych, a mianowicie dach azbestowy i dach spandexowy. Ponadto w niniejszym opracowaniu omówiono wpływ wysokości między panelami słonecznymi a dachem na temperaturę i jej wpływ na wydajność paneli słonecznych. W niniejszym opracowaniu omówiono wpływ wysokości między panelami słonecznymi a dachem (T3) z różnych rodzajów materiałów wpływ na wartość sprawności paneli słonecznych, gdzie maksymalna wartość sprawności jest uzyskiwana dla pokrycia dachowego z azbestu w temperaturze (T3) 35.56°C 5.35% i pokrycie dachowe ze spandexu w temperaturze (T3) 35.16°C 4.53%.

Keywords: Solar Panel, Rooftop, Asbestos Roof, Spandex Roof, Efficiency. Słowa kluczowe: panel słoneczny, dach, dach azbestowy, dach z elastanu, wydajność.

1. Introduction

Solar energy is a renewable energy that can be used as an alternative energy source. The use of solar energy can meet some of the electrical energy needs in Indonesia. Indonesia’s geographical location supports the availability of solar energy throughout the year. The installation of solar power plants is very suitable for remote areas that are difficult to reach by a centralized power grid [1].

One application of photovoltaic solar energy technology that is currently being developed is the technology of Solar Power Generation on the roof of the building or rooftop solar cell. Rooftop solar cell technology is a reliable solution for energy supply [2]. The advantages of roof solar panels are that they are easy and inexpensive to integrate with existing electrical systems, and can reduce the load on the system network. In addition, the application of this system is easy to maintain and operate, and has a significant impact in reducing pollution and the greenhouse effect [3].

The potential of solar energy today in Indonesia is very large [4]. Several studies have discussed the use of rooftop PV panel technology, among others [5] discussing the application of rooftop solar power plants in campus buildings. [6] has investigated the design of off-grid solar panel roofs in residential homes as an alternative source of electrical energy. [7] discusses strategies for the application of solar cells for residential and commercial buildings. [8] discusses the application of rooftop solar power generation to reduce electricity consumption during peak load conditions. The application of roof PV panels in buildings has been proposed by many researchers [9-11]. The review papers about solar tracking system [12], solar PV cleaning technology [13], Solar photovoltaic system cooling technology [14] have been documented. The application of control and optimization technology to solar cells has also been developed by many researchers such as PSO-PR Power flow Control [15], grid-connected SmartInverter control [16] and Grid-Connected PV Inverter control using Discrete-Time Integral Variable Structure [17].

Installation of roof solar panels currently only considers the power capacity to be installed [18], and the available roof area. However, it does not consider the type of roofing material where the PV is installed. While the roof of the house has the characteristics of absorption of sunlight and different thermal properties depending on the type of roofing material. Several previous studies have been conducted to determine the effect of temperature on the roof covering including [19], [20], and [21], which have investigated the thermal conditions of the roof space produced from various types of roofing materials such as tile, asbestos and zinc. The results of this study indicate that the average temperature of the roof space on roof tiles is 1.91°C to 2.31°C, lower than that of asbestos and zinc roofs. Tile roofs can withstand solar radiation better. The average surface temperature of the tile roof was 0.28°C lower than the surface temperature of the asbestos roof and 1.55°C lower than the surface temperature of the zinc roof. However, the lowest average roof surface temperature profile during the day on an asbestos roof is 38.71°C. [20] have discussed the manufacture and testing of tools for determining the conductivity of zinc, multirroof, and asbestos plates. The results showed that the highest conductivity value was found in the zinc plate (0.482 W/m°C), and the lowest conductivity value was found in the multi-roof (0.132 W/m°C). [21] discussed the effect of Solar Photovoltaic Panels on Roof Heat Transfer [21] where the roof temperature under PV is 2.5 times more relaxing than the roof exposed to the sun.

In [22] discusses the thermal characteristics of the installation of roof PV panels. Several other previous studies discussed the effect of the type of roofing material used as a place to install roof PV panels on the temperature between the solar panels and the roof, and have not studied the effect of the distance between the solar panels and the type of roof. Then the material about the temperature of the solar panel and its impact on the efficiency of the solar panel has not been discussed. This experiment was conducted to obtain the characteristics of the I-V curve and the efficiency of solar panels mounted on roofs made of asbestos and spandex roofing materials. In this study, the height of the solar panels on the roof was varied at 20, 25, 30 and 35 cm.
2. Methods

II.1. Research Instrument Design

For the solar panel mount frame, hollow iron material measuring 4 x 4 cm is used and also angled iron measuring 3 x 3 cm. Acrylic material is used for the material on the load panel. Figure 1 below shows the design of the solar panel frame and roof [23].

Information:
1. Solar Panel Mount
2. Place Solar Simulator
3. Temperature over solar panel, $T_1 \, (^\circ C)$
4. Temperature under solar panel, $T_2 \, (^\circ C)$
5. Temperature between solar panel and roof, $T_3 \, (^\circ C)$
6. Temperature on the roof, $T_4 \, (^\circ C)$
7. Temperature under the roof, $T_5 \, (^\circ C)$
8. Distance Variation Controller (cm)
9. Roof Mount
10. Tilt Angle (°)

In designing the load panel as the output of the solar panel, the acrylic material is used with a size of 75 x 60 cm. The following figure 2 shows the research instrument placement design.

Fig 2. Research Instrument Placement Design

2.1. Testing Procedure

After the process of manufacturing and installing the research components is complete, it is followed by the testing procedure. The steps in the testing procedure are as follows:

1. The test will be carried out at 09.00 until 15.00 local time.
2. Adjust the angle of the solar panels based on the type of roof used.
3. Installing solar panels on the roof material with a distance of H1.
4. Measure the distance (cm) between solar panels and the roof being used.
5. Take temperature measurements on top of the solar panel ($^\circ C$) and the temperature between the solar panel and the roof ($^\circ C$) using the TC-O8 Thermocouple Data Logger.
6. Measuring the amount of solar radiation (W/m2) on a solar panel using a Solar Power Meter SPM-1116SD measuring instrument.
7. Connect the solar panel output to the load panel and turn the toggle switch ON.
8. Connect a Datalogger Voltmeter and Ammeter with a laptop to observe the amount of current and voltage on the solar panel.
 ➢ To ensure that the datalogger and measurement instruments on the load panel are functioning correctly, it can be determined by turning ON the switch on the lamp, then increasing the voltage by turning the potentiometer, in this case, the dimmer to its top condition. The brightness of the lamp will be directly proportional to the amount of current and voltage and the intensity of the sun received by the solar panel. After all, measuring instruments are functioning correctly, then data retrieval can be carried out.
9. Procedure 1 to 9 is repeated with H2 and H3 intervals.
10. Procedures 1 to 10 are repeated for asbestos roof and spandex roof.
3. Results and Discussion

The research data contains solar panel parameters measured on different types of roofing materials, namely Asbestos Roof and Spandex Roof. For every kind of roof, the measurement data is also detailed in the various sizes of solar panels and roof distances, covering a distance of 35 cm, 30 cm, 25 cm, and 20 cm. In the variation of length, the research was conducted at 3 (three) observation times, namely at 09.30 WITA, 12.30 WITA, and 14.30 WITA.

The measurement data needed in this study include:
- Solar radiation, G_{bt} (W/m²)
- Temperature over solar panel, T_1 (°C)
- Temperature under solar panel, T_2 (°C)
- Temperature between solar panel and roof, T_3 (°C)
- Temperature on the roof, T_4 (°C)
- Temperature under the roof, T_5 (°C)
- Solar panel current, I (A)
- Solar panel voltage, V (V)
- Time, (WITA)

The following is research data from each of the above categories, which is taken from the average value of the measurement results.

3.1. Characteristics of I-V on Asbestos Roof

Figure 5 shows the characteristics of the I-V curve with various variations in the distance of the solar panels on Asbestos Roof for the first experiment. In this graph, it can be seen that the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the more significant the voltage, the smaller the current. This is influenced by the resistive load (shear resistance) used in this experiment which is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and Asbestos Roof.

It appears that the largest voltage value is obtained at a distance of 30 cm, which is 22.75 V with a current value of 0.27 A.

Figure 6 shows the characteristics of the I-V curve with variations in the distance of the solar panels on the asbestos tile for the second experiment. From this second experiment, the current and voltage characteristics are almost the same as the first experiment, namely the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. The effect is the same as in the first experiment, which is influenced by the resistive load used in this experiment, where the load is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. In this second experiment, the voltage values for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm tend to be constant following changes in the value of the shear resistance. Compared to other distances, the minimum current and voltage characteristics are shown at a distance of 20 cm, this is due to the effect of convection heat transfer between solar panels and asbestos roof at a distance of 20 cm is greater because this experiment is carried out when solar radiation is at its maximum value (daylight). The largest value in this second experiment was obtained at a distance of 35 cm with a value of 23.24 V with a current of 0.26 A.

Figure 7 shows the characteristics of the I-V curve with various variations in the distance of the solar panels on the asbestos tile for the third experiment. From this third experiment, the current and voltage characteristics are almost the same as the previous experiment, where...
the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. This is because the effect of the resistive load used in this experiment is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. The graph above shows that the voltage values for each variation with a distance of 35 cm, 30 cm, and 22 cm tend to be constant following changes in the value of the shear resistance. However, at a distance of 20 cm the graph trend appears to be fluctuating where the change in the current value is quite large at a voltage of 18.26 V. The largest value is obtained at a distance of 35 cm with a value of 22.01 V with a current of 0.21 A.

3.2. Characteristics of I-V on Spandex Roof

To compare the performance of the previous experiment with asbestos roofs, the second experiment used spandex roofs. Figure 8 shows the characteristics of the I-V curve with various variations in the distance of the solar panels on the spandex roof for the first experiment. The same thing is also obtained in this test, where the maximum to minimum load variation of the resistive load causes the voltage generated by the solar panel to be inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current for each variation of the distance between the solar panels. The graph above shows that the voltage values for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm tend to be constant following changes in the value of the shear resistance. The largest value is obtained at a distance of 30 cm with a value of 23.61 V with a current of 0.23 A.

The next test in the second experiment with a spandex roof is shown in Figure 9, the characteristics of the I-V curve with various variations in the distance of the solar panels on the spandex roof. From this second test, it shows the same trend as the previous experiment, where the voltage generated by the solar panel is inversely proportional to the amount of current flowing, where the greater the voltage, the smaller the current. This is also influenced by the resistive load used where the load is varied from the maximum value to the minimum value for each variation of the distance between the solar panels and the asbestos roof. The graph above shows that the voltage values for each variation with a distance of 35 cm, 30 cm, 25 cm, and 20 cm tend to be constant following changes in the value of the shear resistance. The largest value is obtained at a distance of 30 cm with a value of 22.17 V with a current of 0.21 A.

Based on the two types of experiments with asbestos and spandex roofing shown in Figure 5-10, the characteristics of battery charging are controlled using the Battery Control Regulator (BCR). BCR is a battery charging controller circuit in a solar cell system by adjusting the voltage used to charge the battery in a voltage range of 11.4 V to 14.5 V as shown in the graph above for charging a 12 V battery. If the battery voltage drops to 11.4 V, the controller will charge the battery if the sun is shining at that time, but if it is at night, the controller will cut off the supply of electrical energy. If the battery voltage rises to 14.5 V, the controller will stop charging. Excessive battery voltage will result in a relatively short battery life.

Figure 11 shows a comparison of temperature characteristics for several variations of the distance on the type of Asbestos Roof material. Tests using asbestos roofing materials showed that at a distance of 35 cm the highest T3 temperature in tests using asbestos roofing materials was obtained in tests conducted at 09.30 WITA, which was around 33.33°C. Furthermore, in the test with a distance of 30 cm, the highest T3 temperature was found in the test carried out at 14.30 WITA which was around 32.81°C. Furthermore, in the test using asbestos roofing material, it shows that at a distance of 35 cm the highest T3 temperature was found in the test conducted at 12.30 WITA which is around 35.80°C. Furthermore, in the test with a distance of 30 cm, the highest T3 temperature was found in the test conducted at 14.30 WITA which was around 36.82°C. Furthermore, in the test with a distance of 25 cm, the highest T3 temperature was found in the test conducted at 14.30 WITA which was around 37.67°C. Furthermore, in the test with a distance of 20 cm, the highest T3 temperature was found in the test carried out at 14.30 WITA which was around 35.62°C. Table 2 shows the results of testing the characteristics of the solar panels on Asbestos Roofs.

Table I. Comparison of Temperature Characteristics of Asbestos Roof

<table>
<thead>
<tr>
<th>Distance (cm)</th>
<th>Time (WITA)</th>
<th>G_{in} (W/m²)</th>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>T_3 (°C)</th>
<th>T_4 (°C)</th>
<th>T_5 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>484.4</td>
<td>35.09</td>
<td>30.81</td>
<td>33.33</td>
<td>33.56</td>
<td>33.02</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1088</td>
<td>32.37</td>
<td>28.96</td>
<td>30.34</td>
<td>31.51</td>
<td>29.34</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>688.7</td>
<td>33.61</td>
<td>34.55</td>
<td>32.96</td>
<td>34.50</td>
<td>32.18</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>589.3</td>
<td>34.57</td>
<td>29.85</td>
<td>32.72</td>
<td>35.66</td>
<td>34.46</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1056</td>
<td>33.92</td>
<td>21.94</td>
<td>26.71</td>
<td>33.31</td>
<td>31.75</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>676.8</td>
<td>36.93</td>
<td>34.64</td>
<td>32.81</td>
<td>34.34</td>
<td>33.62</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>556.4</td>
<td>35.68</td>
<td>29.89</td>
<td>32.34</td>
<td>34.42</td>
<td>31.86</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1035</td>
<td>35.24</td>
<td>29.81</td>
<td>26.65</td>
<td>34.59</td>
<td>32.40</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>681.5</td>
<td>36.32</td>
<td>33.16</td>
<td>32.42</td>
<td>34.90</td>
<td>34.49</td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>512.8</td>
<td>40.62</td>
<td>30.13</td>
<td>33.24</td>
<td>35.61</td>
<td>34.07</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1048</td>
<td>35.97</td>
<td>28.24</td>
<td>27.03</td>
<td>34.54</td>
<td>33.07</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>691.5</td>
<td>38.52</td>
<td>34.14</td>
<td>32.78</td>
<td>34.71</td>
<td>33.64</td>
</tr>
</tbody>
</table>

Table II. Comparison of Temperature Characteristics of Spandex Roof

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>G_{in} (W/m²)</th>
<th>I (A)</th>
<th>T_1 (°C)</th>
<th>T_2 (°C)</th>
<th>T_3 (°C)</th>
<th>T_4 (°C)</th>
<th>T_5 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>753.3</td>
<td>0.92</td>
<td>56.01</td>
<td>47.85</td>
<td>32.18</td>
<td>35.16</td>
<td>33.85</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>957.9</td>
<td>0.66</td>
<td>50.62</td>
<td>49.41</td>
<td>35.80</td>
<td>37.51</td>
<td>34.82</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>776</td>
<td>0.65</td>
<td>57.42</td>
<td>54.35</td>
<td>34.14</td>
<td>38.29</td>
<td>37.07</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>797.9</td>
<td>0.63</td>
<td>57.30</td>
<td>51.04</td>
<td>31.51</td>
<td>35.67</td>
<td>34.55</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1069</td>
<td>0.66</td>
<td>49.96</td>
<td>48.66</td>
<td>35.00</td>
<td>37.74</td>
<td>35.25</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>755.3</td>
<td>0.53</td>
<td>58.61</td>
<td>57.06</td>
<td>36.82</td>
<td>40.02</td>
<td>38.55</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>826.2</td>
<td>0.66</td>
<td>51.96</td>
<td>48.44</td>
<td>32.37</td>
<td>36.08</td>
<td>33.34</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1039</td>
<td>0.69</td>
<td>56.36</td>
<td>55.65</td>
<td>35.51</td>
<td>39.20</td>
<td>36.45</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>757.2</td>
<td>0.67</td>
<td>56.40</td>
<td>58.13</td>
<td>37.67</td>
<td>40.71</td>
<td>40.70</td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>847.3</td>
<td>0.73</td>
<td>56.96</td>
<td>54.12</td>
<td>34.39</td>
<td>37.46</td>
<td>35.56</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1064</td>
<td>0.49</td>
<td>53.79</td>
<td>51.47</td>
<td>35.59</td>
<td>38.71</td>
<td>37.67</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>742.4</td>
<td>0.53</td>
<td>56.96</td>
<td>56.72</td>
<td>35.62</td>
<td>41.32</td>
<td>39.09</td>
</tr>
</tbody>
</table>

Testing the temperature characteristics of solar panels on the Asbestos Roof shows a graph of a temperature trend that fluctuates from 09.30 to 14.30. Meanwhile, in the Spandex Roof material test, the temperature chart trend increased from 09.30 to 14.30. From the results of testing with asbestos roofs, the temperature values fluctuate, this is because this roof is a poor conductor so that heat from the roofing material will be difficult to transfer to the top of the solar panel.

For example, at 12.30 WITA, the highest T3 temperature was produced using spandex roofing material. This is because spandex roofs are good conductors so that during the day, conduction heat transfer will be greater so that the temperature between the solar panels and the roof is also large. Based on graph 10, it can be seen that spandex roof is the material that has the highest temperature of 35.8°C in the test conducted at 12.30 WITA.

3.4. Solar Panel Efficiency Comparison

For efficiency analysis, calculations are carried out by taking the sample data in Table 1 (on asbestos roof with a distance of 35 cm at 09.30 WITA). The parameters are as follows:

- The intensity of solar radiation, $G_{in} = 783.3 \text{ W/m}^2$
- Voltage, $V = 17.11 \text{ V}$
- Current, $I = 0.92 \text{ A}$
- Cross-sectional area, $A = 0.538 \times 0.636 = 0.342 \text{ m}^2$
- Temperature on top of the solar panels, $T_1 = 56.01 \degree C$
- Temperature under solar panels, $T_2 = 47.86 \degree C$
- Temperature between solar panels and roof, $T_3 = 30.18 \degree C$
- Temperature on the roof, $T_4 = 35.16 \degree C$
- Temperature under the roof, $T_5 = 33.85 \degree C$
- Time = 9.30 WITA

The following is the complete calculation of input power, output power, and solar panel efficiency shown in table 3 for asbestos roof tile material types and table 4 for ceramic tile materials.
Based on Figure 12, it shows a comparison of efficiency for a height of 35 cm on the types of asbestos and spandex roofing materials. In the graph for testing the asbestos roofing material, it can be seen that the efficiency of the solar panel (\(\eta \)) in the test carried out at 09.30 WITA looks greater than the test carried out at 12.30 WITA, then tends to be constant and does not experience too significant changes in the test carried out at 12.30 WITA at 14.30 WITA. The highest efficiency value was obtained from asbestos roofing material with a test time of 09.30 WITA of 5.35%. Meanwhile, the lowest efficiency value was obtained from the spandex roof testing with the testing time at 12.30 WITA, namely 2.98%. While at a height of 30 cm, the highest efficiency value in the asbestos roof testing at 09.30 WITA was 4.52%. Meanwhile, the lowest efficiency value was obtained from the asbestos roof testing with the testing time at 12.30 WITA which is 2.60%. Meanwhile, at a height of 25 cm, the highest efficiency value obtained by asbestos roofing material was 5.27% at the time of testing at 09.30 WITA. Meanwhile, the lowest efficiency value was obtained from the spandek roof test with the testing time at 12.30 WITA, namely 2.96%. While at a height of 20 cm, the highest efficiency value obtained on the type of asbestos roofing material is 4.94% at the time of testing at 09.30 WITA. While the lowest efficiency value was obtained in the spandek roof test with the testing time at 12.30 WITA which is 2.26%.

TABLE 3. POWER AND EFFICIENCY OF SOLAR PANEL ON ASPBESTOS ROOF

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>(G_{in}) (W/m²)</th>
<th>(V) (V)</th>
<th>(I) (A)</th>
<th>(P_{out}) (W)</th>
<th>(P_{in}) (W)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>484.9</td>
<td>20.61</td>
<td>0.54</td>
<td>8.79</td>
<td>165.74</td>
<td>5.35</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>488.7</td>
<td>19.70</td>
<td>0.52</td>
<td>8.13</td>
<td>235.66</td>
<td>3.44</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>676.8</td>
<td>20.53</td>
<td>0.55</td>
<td>9.59</td>
<td>231.56</td>
<td>4.14</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>599.3</td>
<td>18.49</td>
<td>0.55</td>
<td>8.30</td>
<td>205.06</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>681.5</td>
<td>20.03</td>
<td>0.49</td>
<td>8.04</td>
<td>233.17</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>512.8</td>
<td>17.01</td>
<td>0.64</td>
<td>9.06</td>
<td>190.38</td>
<td>5.27</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>556.4</td>
<td>18.47</td>
<td>0.64</td>
<td>8.79</td>
<td>175.45</td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1035</td>
<td>19.50</td>
<td>0.74</td>
<td>10.92</td>
<td>354.28</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>676.8</td>
<td>20.79</td>
<td>0.51</td>
<td>9.13</td>
<td>231.62</td>
<td>3.45</td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>783.3</td>
<td>17.11</td>
<td>0.92</td>
<td>12.13</td>
<td>317.22</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>776.9</td>
<td>19.92</td>
<td>0.85</td>
<td>11.14</td>
<td>314.29</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>797.9</td>
<td>19.15</td>
<td>0.63</td>
<td>8.80</td>
<td>323.17</td>
<td>2.72</td>
</tr>
</tbody>
</table>

TABLE 3. POWER AND EFFICIENCY OF SOLAR PANEL ON SPANDEX ROOF

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Time (WITA)</th>
<th>(G_{in}) (W/m²)</th>
<th>(V) (V)</th>
<th>(I) (A)</th>
<th>(P_{out}) (W)</th>
<th>(P_{in}) (W)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>09.30</td>
<td>783.3</td>
<td>17.11</td>
<td>0.92</td>
<td>12.13</td>
<td>317.22</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>957.9</td>
<td>21.27</td>
<td>0.66</td>
<td>12.03</td>
<td>387.96</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>776.9</td>
<td>19.92</td>
<td>0.85</td>
<td>11.14</td>
<td>314.29</td>
<td>3.51</td>
</tr>
<tr>
<td>30</td>
<td>09.30</td>
<td>797.9</td>
<td>19.15</td>
<td>0.63</td>
<td>8.80</td>
<td>323.17</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1096</td>
<td>21.46</td>
<td>0.66</td>
<td>12.22</td>
<td>432.62</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>755.3</td>
<td>20.23</td>
<td>0.53</td>
<td>9.58</td>
<td>325.91</td>
<td>3.00</td>
</tr>
<tr>
<td>25</td>
<td>09.30</td>
<td>826.2</td>
<td>19.13</td>
<td>0.68</td>
<td>10.15</td>
<td>334.60</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1039</td>
<td>20.95</td>
<td>0.69</td>
<td>12.53</td>
<td>420.94</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>726.4</td>
<td>19.35</td>
<td>0.54</td>
<td>10.99</td>
<td>294.21</td>
<td>3.76</td>
</tr>
<tr>
<td>20</td>
<td>09.30</td>
<td>847.3</td>
<td>18.98</td>
<td>0.73</td>
<td>11.26</td>
<td>343.17</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>12.30</td>
<td>1064</td>
<td>22.25</td>
<td>0.49</td>
<td>9.29</td>
<td>431.04</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>14.30</td>
<td>724.2</td>
<td>19.66</td>
<td>0.53</td>
<td>8.48</td>
<td>293.29</td>
<td>2.89</td>
</tr>
</tbody>
</table>
The efficiency value in this experiment is influenced by the measured value of solar radiation and temperature based on variations in height between the roof and solar panels. Other factors that affect the efficiency of solar panels in this study such as wind speed and reflectance of sunlight from roofing materials to solar panels are assumed not to have much effect on this experiment because the test framework (solar panels and roofs) are not placed on tall buildings so that the factor -these factors are ignored.

The weather conditions are based on BMKG sources in the data collection process for asbestos roofs in the morning the conditions are cloudy, sunny in the afternoon, and the temperature is between 23 - 32°C and humidity is 60-85%. Meanwhile, the weather conditions in the data collection process for spandek roofs were cloudy in the morning, cloudy in the afternoon, and the temperature was between 27 - 31°C.

4. Conclusion
Based on the research that has been done, it can be concluded that:

1. Based on this research, the temperature characteristics between the solar panel and the roof (T3) of various types of material have an influence on the efficiency value of the solar panel, where the maximum efficiency value of the solar panel is obtained for the type of material:
 a. Asbestos roof at a temperature (T3) of 35.56˚C, with a maximum efficiency value of 5.35% with sunny cloudy weather conditions.
 b. Spandek roof at a temperature (T3) of 35.16˚C, with a maximum efficiency value of 4.53% with sunny cloudy weather conditions.

2. Based on the results of data observations in this study, the optimal distance between the solar panels and the roof was obtained, for the maximum efficiency value, namely: asbestos roof with a distance of 35 cm, and spandek roof with a distance of 35 cm.

Authors’ information
1, 2Department of Mechanical Engineering, Energy Power Plant Engineering, State Polytechnic of Ujung Pandang.
Email: hamzah_said@poliupg.ac.id
wandi@poliupg.ac.id

REFERENCES