Periodicals

Applied Mechanics and Materials
ISSN: 1662-7482

Volumes (/AMM)

My eBooks (/AMM/ebooks)

Details (/AMM/Details)

Editorial Board (/AMM/Editors)

Editor(s) in Chief

Prof. Xipeng Xu
Huaqiao University, Research Institute of Manufacturing Engineering at Huaqiao University; No.668, Jimei Road, Xiamen, China, 361021;

Editorial Board

Prof. Ezio Cadoni
University of Applied Sciences of Southern Switzerland, Department for Construction, Environment and Design, DynaMat Laboratory, SUPSI-DACD; Campus Trevano, Canobbio, 6952, Switzerland;

Dr. Yuan Sheng Cheng
Harbin Institute of Technology, School of Materials Science and Technology; P.O. Box 435, Harbin, China, 150001;

Dr. D.A. Chinakhov
National Research Tomsk Polytechnic University, Yurga Institute of Technology (Branch); Leningradskaya 26, Yurga, Russian Federation, 652055;

Prof. Oana Dodun
Gheorghe Asachi Technical University of Iaşi, Department of Machine Manufacturing Technology; D. Mangeron Blvd, 39A, Iaşi, 700050, Romania;

Prof. Grigore Gogu
Institut Français de Mécanique Avancée, Campus de Clermont-Ferrand/les Cézeaux, CS 20265; Clermont-Ferrand, 63175, France;

Dr. Tibor Krenický
Technical University of Košice, Faculty of Manufacturing Technologies with a Seat in Prešov; Bayerova 1, Presov, 080 01, Slovakia;

Dr. Rozli Zulkifli
Universiti Kebangsaan Malaysia, Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment; Bangi, Malaysia, 43600;
<table>
<thead>
<tr>
<th>PAPER TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Line to Ground-Fault Detection for Unit Generator-Transformer Based on Wavelet Transform and Neural Networks</td>
<td>47</td>
</tr>
<tr>
<td>(978-3-03835-669-1)</td>
<td></td>
</tr>
<tr>
<td>Transmission Line Using Discrete Wavelet Transform and Back-Propagation Neural Network Based on Clarke's Transformation</td>
<td>156</td>
</tr>
<tr>
<td>(978-3-03835-669-1)</td>
<td></td>
</tr>
</tbody>
</table>
An Analytical Literature Review of the Available Techniques for Relieving Transmission Line Bottleneck in Deregulated Power Systems

Authors: Abdullah Asuhaimi Mohd Zin, Mehdi Moradi, Azhar Khairuddin, Mohammad Moradi

Chapter 3: Power Transmission Lines and Electricity Supply

Abstract: Relieving power transmission line bottleneck is one of the major tasks performed by system operators (SOs) to ensure the operation of...
Models (/AMM.818.129)
Authors: Ibrahim Alhamrouni, Azhar Khairuddin, Mohamed Salem, Abdelrahman Alnajjar
Chapter 3: Power Transmission Lines and Electricity Supply
Abstract: Transmission expansion planning has become a complicated procedure more than any time it was with the rapid growth of the transmission...

A Review of Recent Studies on Positive Lightning (/AMM.818.134)
Authors: Chin Leong Wooi, Zulkurnain Abdul-Malek, Noor Azlinda Ahmad, Mehrdad Mokhtari, Amir Hesam Khavari
Chapter 3: Power Transmission Lines and Electricity Supply
Abstract: Lightning is a natural phenomenon that has much impact on man and man-made systems. Lightning can be generally characterized as either...

Cloud-to-Ground Lightning in Malaysia: A Review Study (/AMM.818.140)
Authors: Chin Leong Wooi, Zulkurnain Abdul-Malek, Noor Azlinda Ahmad, Mehrdad Mokhtari, Amir Hesam Khavari
Chapter 3: Power Transmission Lines and Electricity Supply
Abstract: Lightning has been the major cause of power interruptions in Malaysia. Malaysia is located near the equator having approximately 200 thunder...

A Systematic Approach to Safe and Effective Earthing System Design for High Voltage Substation (/AMM.818.146)
Authors: Ahmad Shukri A. Kamal, Yanuar Z. Arief, Muhammad Abu Bakar Sidik
Chapter 3: Power Transmission Lines and Electricity Supply
Abstract: In high voltage substation, earthing system is an essential part not only for providing the protection to people who are working or walking...

An Economic Assessment of Hybrid Renewable Energy for a Remote Area Electrification in Iran (/AMM.818.151)
Authors: Amir Hesam Khavari, Zulkurnain Abdul-Malek, Mehdi Moradi,
Chapter 3: Power Transmission Lines and Electricity Supply

Abstract: The utilization of renewable resources is growing, in part due to the environmental impacts caused by fossil fuels. The largest sources of...

Transmission Line Using Discrete Wavelet Transform and Back-Propagation Neural Network Based on Clarke’s Transformation (/AMM.818.156)

Authors: Makmur Saini, Abdullah Asuhaimi bin Mohd Zin, Mohd Wazir Bin Mustafa, Ahmad Rizal Sultan, Rahimuddin

Chapter 3: Power Transmission Lines and Electricity Supply

Abstract: This paper proposes a new technique of using discrete wavelet transform (DWT) and back-propagation neural network (BPNN) based on Clarke’s...

Development of Remote Control System for Residential AC Power Supply Based on GSM Technology (/AMM.818.169)

Authors: Muhamad Syukri Md Noh, Yanuar Z. Arief, Nor Asiah Muhamad

Chapter 4: Energy in Buildings

Abstract: The present study deals with the development of remote control system based on the Global System for Mobile Communication (GSM) technology...

Energy Analysis of Efficient Lighting System Design for Lecturing Room Using DIALux Evo 3 (/AMM.818.174)

Authors: Mohd Athir Kamaruddin, Yanuar Z. Arief, Mohd Hafizi Ahmad

Chapter 4: Energy in Buildings

Abstract: Rate of electricity consumption is increasing due to the increasing demand every year, while the supply of natural resources is significantly...

Authors: Azuan Aris, Yanuar Z. Arief, Lau Kwan Yiew, Nor Asiah Muhamad

Chapter 4: Energy in Buildings

Abstract: Rate of electricity consumption is increasing due to the increasing demand every year, while the supply of natural resources is significantly...
Transmission Line using Discrete Wavelet Transform and Back-propagation Neural Network based on Clarke’s Transformation

Makmur SAINI1,3,a, Abdullah Asuhaimi Bin MOHD ZIN 1,b, Mohd Wazir Bin MUSTAFA1,c, Ahmad Rizal SULTAN1,3,d, Rahimuddin 2,e

1Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, 2Faculty of Mechanical Engineering, Universiti Teknologi Malaysia 3Politeknik Negeri Ujung Pandang, South Sulawesi, Indonesia 90245

amakmur.saini@fkegraduate.utm.my, babdullah@fke.utm.my, cwazir@fke.utm.my, dahmad.rizal@fkegraduate.utm.my, erahimnav@gmail.com

\textbf{Keywords}: Wavelet Transformation, back-propagation neural network, Fault Classification, Fault detection, Clarke’s Transformation, PSCAD/EMTDC

\textbf{Abstract}. This paper proposes a new technique of using discrete wavelet transform (DWT) and back-propagation neural network (BPNN) based on Clarke’s transformation for fault classification and detection on a single circuit transmission line. Simulation and training process for the neural network are done by using PSCAD / EMTDC and MATLAB. Daubechies4 mother wavelet (DB4) is used to decompose the high frequency components of these signals. The wavelet transform coefficients (WTC) and wavelet energy coefficients (WEC) for classification fault and detect patterns used as input for neural network training back-propagation (BPNN). This information is then fed into a neural network to classify the fault condition. A DWT with quasi optimal performance for preprocessing stage are presented. This study also includes a comparison of the results of training BPPN and DWT with and without Clarke’s transformation, where the results show that using Clarke transformation in training will give in a smaller mean square error (MSE) and mean absolute error (MAE). The simulation also shows that the new algorithm is more reliable and accurate.

\textbf{Introduction}

The transmission line is vital elements in power system since this electrical energy can be transferred from are placed to another. However, this transmission line part of power system has often impaired. Most of the disturbances on the power system come from the interference on the transmission line. Therefore, speed and accuracy in the determination of fault detection and classification of disturbances in the transmission line have a very important role in electric power systems.

This paper proposes a method of using discrete wavelet transform (DWT) and back-propagation neural network (BPNN) based on Clarke’s transformation to determine the fault detection and classification on single circuit transmission line. This study presents a different approach called alpha-beta transformation based on the Clarke’s transformation, which is also a transformation of a three-phase system into a two-phase system [1, 2], where the result of the Clarke’s transformation is transformed into discrete wavelets transform.

In recent years, several methods of fault classification have been proposed. Some of them are based on artificial neural network [3,4], wavelet transform [5,6] and also combination of these techniques [7-8].

This paper proposes a novel method for fault classification in transmission lines using discrete wavelet transform (DWT) and back-propagation neural network (BPNN). The key idea of the method is to use wavelet coefficient detail and the wavelet energy coefficient of the currents as the input patterns to create a simple multi-layer perception network (MLP). This paper presents the development of a new decision algorithm for use in the protective relay for fault detection and
classification. To validate this technique, the fault conditions had been simulated using EMTDC / PSCAD [9]

Overview of Wavelet transform and Artificial Neural Network (ANN)

Discrete Wavelet Transform (DWT). In general, the wavelet transform is the decomposition of a signal by a function $\Psi_{S,\tau}(t)$ which has been dilated and translated, known as the mother wavelet. In other words, the signal is represented as the sum of a collection of dilated-version and translated-version mother wavelet function. The set of functions is as defined in the following equations [10, 11]:

$$\Psi_{S,\tau}(t) = \frac{1}{\sqrt{S}} \varphi \left(\frac{t-\tau}{S} \right)$$ \hspace{1cm} (1)

Where S is the dilation parameter ($S \in \text{real}$) and τ is the translation parameter ($\tau \in \text{real}$). Parameter S indicates the width of the curve wavelet; so if the value of S is wider, the wavelet curve will be larger, and if the value of s is reduced, the wavelet curve will be smaller. Parameter τ indicates the localization of the wavelet curve centered on the space $t = \tau$. Discrete data are required in fault classification and detection Discrete Wavelet Transform (DWT), so that Equation (1) becomes [12, 13]:

$$\Psi_{S,\tau}(t) = 2^{j/2} \varphi \left(2^j (S - \tau) \right) , j , k \in \mathbb{Z}$$ \hspace{1cm} (2)

The variables j and k represent an integer for scaling and shifting the mother wavelet function to produce a kind of wavelet known as Haar wavelet. The width of the wavelet is indicated by scale s and while its position is indicated by τ. Discrete wavelet transformation aims to reduce the redundancy in continuous transformation by taking the discrete values of the parameters s and τ. Wavelet function in Equation (1) was first introduced by Grossman and Morlet, while Equation (2) was pioneered by Daubechies. In Grossman Morlet function, s is the dilation parameter and τ is the translation parameter. In Daubechies function, the dilation parameter is indicated by 2^j, and translation parameters by τ. Both functions of Ψ can be regarded as the mother wavelet. In the context of wavelet transform, signal processing is a method to decompose the desired input signal into another wave called wavelet and also to analyze the signal by giving treatment of the wavelet coefficients. The decomposition process involves two filters, namely low pass filter and high pass filter. The results obtained in the form of cA approximation signal and detail signal cD are shown in Fig. 1, as equations [14]:

$$\delta_{\text{high}} [k] = \sum_n X[n] \cdot g[2k - n] .$$ \hspace{1cm} (3)

$$\delta_{\text{low}} [k] = \sum_n X[n] \cdot h[2k - n] .$$ \hspace{1cm} (4)

Where $\delta_{\text{high}} [k]$ — Output of high-pass filter and $\delta_{\text{low}} [k]$ — Output of low-pass filter.

![Figure 1. The process decomposition of Discrete Wavelet Transform](image-url)
Back-Propagation Neural Network (BPNN). In general, the neural network is divided into two parts: training and testing. Training is a learning process of the neural network system that governs how the input values and the output are mapped to obtain the appropriate model, while testing is a process of testing the accuracy of the model obtained from the training process. Back-propagation neural network (BPNN) is a trained network to obtain a balance between the ability of the network to recognize the patterns used for training, as well as the network’s ability to provide the correct response to the input pattern similar to the style employed during training. Back-propagation training includes the following 3 steps:

1. Step I: Feed Forward
 During the forward propagation, the value of the input \(x_i \) and the output of each unit of the hidden layer \(z_j \) will be propagated to the hidden layer is defined using activation function, and so on to generate the output value of the network \(y_k \). Next, the output value of the network \(y_k \) will be compared with the target to be achieved \(t_k \). Difference of \(t_k - y_k \) is the error that occurs. If this error is smaller than the tolerance limit, the iteration is stopped. However, if the error is greater than the tolerance limit, the weight of each line in the network will be modified to reduce the errors.

2. Step II: Back-propagation
 Based on the error \(t_k - y_k \), calculated factor \(\delta_k \) \((k = 1, 2, ..., m) \) which is used to distribute the error in the unit \(y_k \) to all hidden units will be connected directly with \(y_k \). \(\delta_k \) is also used to change the line weight, directly related to the output unit. In a similar way, the \(\delta_j \) factor is calculated in each unit in the hidden layer as a basis weight of all the changes in the layer below, until all the factors \(\delta \) in hidden units directly related to the input units have been computed.

3. Step III: Changes in Weight
 After all \(\delta \) factors have been calculated, the weights of all the lines will be simultaneously modified, according to changes in weight of a line based on the factor \(\delta \) in the upper layer neurons. For selecting models of fault detection and classification, Mean Absolute Error (MAE) and Mean Squared Error (MSE) are used. The best model is the model that has the smallest value of MAE and MSE.

\[
MAE = \frac{\sum_{i=1}^{n} |e_k|}{n}
\]

\[
MSE = \frac{\sum_{i=1}^{n} e_k^2}{n}
\]

Where: \(MAE = \) Mean Absolute Error, \(MSE = \) Mean Squared Error \(e_k = t_k - y_k \), \(t_k = \) Target, \(y_k = \) Output and \(n = \) number of data

Proposed Algorithm. The design process of the proposed fault detection and classification algorithm for on single circuit transmission lines are as shown in Figure 2:
1) Simulation of various types of disturbances on single circuit transmission line by using PSCAD / EMTDC.

2) Determining the data stream interference, where the signal is transformed by using the Clarke’s transformation to convert the transient signals into the signal’s basic current (Mode), formulated as follows [15,16]:

\[
\begin{bmatrix}
 i_\alpha \\
 i_\beta \\
 i_0
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
 1 & -1/2 & -1/2 \\
 \sqrt{3}/2 & -\sqrt{3}/2 & \sqrt{3}/2 \\
 1/2 & 1/2 & 1/2
\end{bmatrix} \begin{bmatrix}
 i_a \\
 i_b
\end{bmatrix}
\]

3) Input signals are analyzed by DWT for extracting the information of the transient signal in the time and the frequency domain [17]. In the proposed algorithm, 'Db4' mother wavelet is used to get the DWT coefficients for the classification of different types of fault. It will then be calculated S_0, S_α, S_β, S_γ, Q_0, Q_α, Q_β, Q_γ, E_0, E_α, E_β and E_γ, where S_0, S_α, S_β and S_γ represent the sum of the four levels of detail coefficients of mode currents I_0, I_α, I_β and I_γ, respectively, while Q_0, Q_α, Q_β and Q_γ represent the sum of the absolute value of the coefficient of the fourth-level detail mode currents I_0, I_α, I_β and I_γ, respectively, and wavelet energy of coefficients E_0, E_α, E_β and E_γ represent the sum of the four levels of wavelet energy of coefficients of mode currents I_0, I_α, I_β and I_γ, respectively.

4) The input of BPNN training consists of detail coefficients wavelet and wavelet energy. Combination of different fault conditions must be considered and training patterns are required to be generated by simulating various types of faults on single circuit transmission line. Therefore, the type of fault, fault location, fault resistance and fault inception can be determined.

5) Selection of a suitable BPNN topology & structure for a given application. In this proposed scheme, different architectures had been considered. In this study, the set of inputs used were 12 samples of output current signals of on single circuit transmission lines. Two hidden layers were taken and the number of neurons was varied as hidden (1) is 6 and 10, hidden (2) is 12 and 20 results and set output 4, as shown in Fig. 2.

6) Training of BPNN and validation of the trained BPNN is required to check the correctness in generalization, to get back propagation neural network model of the good, and to do experiments on some kind of network architecture in order to generate the value of the smallest
MSE and MAE with the learning process of the training data, test data, as well as the training data. The learning process is done by using the back-propagation gradient descent with adaptive learning rate with 12 input variables, two hidden layer, and 4 outputs, Mean Square Error (MSE) and Mean Absolute Error (MAE)

Simulation Result and Discussion

For the case study, the simulation was modeled on a 150 kV single circuit transmission line, 100 km in length, and connected with the sources at each end, as shown in Fig 3. This system was simulated using PSCAD/EMTDC.

Transmission data:
Sequence Impedance ohm/km
Positive and negative = 0.03574 + j 0.5776
Zero = 0.36315 +j 1.32647
Fault Starting = 0.22 seconds
Duration in fault = 0.15 Seconds
Fault Location (distance) for training and testing = 10, 25, 50, 75 and 90 km
Fault Resistance (R_f) for training and testing: = 2 ohm
Fault Inception Angle for training and testing = 30 degrees
The proposed DWT and BPNN were able to precisely differentiate between the ten categories of faults, as shown in Table 1, with preference to the faults and the ideal output for each of the faults.

<table>
<thead>
<tr>
<th>Fault Type</th>
<th>Phase A Output 1</th>
<th>Phase B Output 2</th>
<th>Phase C Output 3</th>
<th>Ground G Output 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BG</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CG</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ABG</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ACG</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BCG</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BC</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ABC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

WTC and WEC based fault detection and classification. Fault detection can be achieved by using mathematical tools of Discrete wavelet transform (DWT). In this method, each of the derived current fault signal is decomposed into its constituent wavelet sub-bands or levels by the mother wavelet (Db4). The 4 levels of frequency bands are named as d1, d2, d3 and d4. The high frequency components will be increased from d4 to d1. The wavelet coefficients detail of the currents is filtered using Clarke transformation, as shown in Fig. 4, while Fig. 5 shows filtering without using Clarke transformation. By using the rules above mentioned, the first and last faulted samples were found at 10^5 respectively, for a sampling frequency of 200 kHz.
The Wavelet energy coefficients (WEC) are obtained from the sum of square of detailed wavelet transform coefficients (WTC) \[18\]. The wavelet energy coefficient varies over different scales depending on the input signals. The wavelet energy coefficients \(E(s(t)) \) can be defined as follows.

\[
E(s(t)) = \sum_{j=1}^{N} a_j c_j^2
\]

With suitable scaling coefficients, \(a_j \), for the coefficient \(c_j \), is obtained from equivalent signals. Wavelet energy coefficients \(E_0, E_\alpha, E_\beta \) and \(E_\gamma \) represent the sum of the four levels of wavelet energy coefficients of mode currents \(I_0, I_\alpha, I_\beta \) and \(I_\gamma \) with Clarke’s transformation, as shown in Table 2, while \(E_0, E_\alpha, E_\beta \) and \(E_\gamma \) represent the sum of the four levels of wavelet energy coefficients of line currents \(I_0, I_\alpha, I_\beta \) and \(I_\gamma \) without Clarke’s transformation as shown in Table 3.

Table 2. Wavelet coefficient detail and wavelet energy coefficient in fault location 75 km, fault resistance = 2 ohm and fault inception at angle 30 degrees with Clarke’s transformation.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>(S_a)</th>
<th>(S_\alpha)</th>
<th>(S_\beta)</th>
<th>(S_\gamma)</th>
<th>(E_0)</th>
<th>(E_\alpha)</th>
<th>(E_\beta)</th>
<th>(E_\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>0.018988</td>
<td>0.045331</td>
<td>0.093813</td>
<td>0.048482</td>
<td>0.002453</td>
<td>0.011291</td>
<td>0.241902</td>
<td>0.047061</td>
</tr>
<tr>
<td>BG</td>
<td>0.123914</td>
<td>-0.02885</td>
<td>0.150221</td>
<td>0.179081</td>
<td>0.006076</td>
<td>0.005560</td>
<td>0.136218</td>
<td>0.088392</td>
</tr>
<tr>
<td>CG</td>
<td>-0.04495</td>
<td>-0.06826</td>
<td>0.002109</td>
<td>0.070369</td>
<td>0.011168</td>
<td>0.046384</td>
<td>0.030233</td>
<td>0.108216</td>
</tr>
<tr>
<td>AB</td>
<td>0.000184</td>
<td>0.402218</td>
<td>-0.15201</td>
<td>-0.55423</td>
<td>90.723575</td>
<td>0.016681</td>
<td>0.082800</td>
<td>0.040877</td>
</tr>
<tr>
<td>AC</td>
<td>-0.00357</td>
<td>-0.16642</td>
<td>-0.01499</td>
<td>0.151428</td>
<td>94.395346</td>
<td>0.002808</td>
<td>0.204705</td>
<td>0.083398</td>
</tr>
<tr>
<td>BC</td>
<td>-0.00460</td>
<td>0.021685</td>
<td>-0.36300</td>
<td>-0.38468</td>
<td>87.329198</td>
<td>0.002600</td>
<td>0.035734</td>
<td>0.052911</td>
</tr>
<tr>
<td>ABG</td>
<td>-0.00729</td>
<td>0.418471</td>
<td>-0.20360</td>
<td>-0.62208</td>
<td>0.007414</td>
<td>0.012927</td>
<td>0.099141</td>
<td>0.042845</td>
</tr>
<tr>
<td>ACG</td>
<td>0.030388</td>
<td>-0.23095</td>
<td>-0.10108</td>
<td>0.129875</td>
<td>0.015425</td>
<td>0.021610</td>
<td>0.033333</td>
<td>0.055919</td>
</tr>
<tr>
<td>BCG</td>
<td>-0.00816</td>
<td>-0.00854</td>
<td>-0.65272</td>
<td>-0.64417</td>
<td>0.002075</td>
<td>0.005211</td>
<td>0.074346</td>
<td>0.103031</td>
</tr>
<tr>
<td>ABC</td>
<td>-0.06323</td>
<td>0.091704</td>
<td>-0.49996</td>
<td>-0.59167</td>
<td>14.807200</td>
<td>0.018472</td>
<td>0.059018</td>
<td>0.042369</td>
</tr>
</tbody>
</table>

With the use of these wavelet coefficient details, various parameters \(S_0, S_\alpha, S_\beta, S_\gamma \) and \(S_0, S_\alpha, S_\beta \) and \(S_\gamma \) are calculated as Sum of \(4^{th} \) level detailed coefficients of mode current \(I_0, I_\alpha, I_\beta \) and \(I_\gamma \) with Clarke’s transformation as shown in Table 2, and of line currents \(I_0, I_\alpha, I_\beta \) and \(I_\gamma \) without Clarke’s transformation as shown in Table 3.
Table 3. Wavelet coefficient detail and wavelet energy coefficient in fault location 75 km, fault resistance = 2 ohm and fault inception angle 30 degrees without Clarke’s transformation

<table>
<thead>
<tr>
<th>TYPE</th>
<th>S_a</th>
<th>S_b</th>
<th>S_c</th>
<th>E_a</th>
<th>E_b</th>
<th>E_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>0.018988</td>
<td>0.064319</td>
<td>0.077567</td>
<td>-0.08492</td>
<td>0.002453</td>
<td>0.006306</td>
</tr>
<tr>
<td>BG</td>
<td>0.123914</td>
<td>0.140378</td>
<td>0.101792</td>
<td>0.017892</td>
<td>0.006076</td>
<td>0.121018</td>
</tr>
<tr>
<td>CG</td>
<td>-0.04495</td>
<td>-0.11321</td>
<td>-0.08899</td>
<td>-0.01265</td>
<td>0.011168</td>
<td>0.096478</td>
</tr>
<tr>
<td>AB</td>
<td>0.000184</td>
<td>0.402402</td>
<td>-0.33257</td>
<td>-0.06927</td>
<td>90.723575</td>
<td>0.016663</td>
</tr>
<tr>
<td>AC</td>
<td>-0.00357</td>
<td>-0.16999</td>
<td>0.066654</td>
<td>0.092623</td>
<td>94.395346</td>
<td>0.002819</td>
</tr>
<tr>
<td>BC</td>
<td>-0.00460</td>
<td>0.017077</td>
<td>-0.32982</td>
<td>0.298920</td>
<td>87.329198</td>
<td>0.002580</td>
</tr>
<tr>
<td>ABG</td>
<td>-0.00729</td>
<td>0.411173</td>
<td>-0.39286</td>
<td>-0.04020</td>
<td>0.007414</td>
<td>0.010510</td>
</tr>
<tr>
<td>ACG</td>
<td>0.030388</td>
<td>-0.20057</td>
<td>0.058327</td>
<td>0.233409</td>
<td>0.015425</td>
<td>0.018716</td>
</tr>
<tr>
<td>BCG</td>
<td>-0.00816</td>
<td>-0.01671</td>
<td>-0.56917</td>
<td>0.561383</td>
<td>0.002075</td>
<td>0.007826</td>
</tr>
<tr>
<td>ABC</td>
<td>-0.06323</td>
<td>0.028474</td>
<td>-0.54206</td>
<td>0.323901</td>
<td>14.807200</td>
<td>0.019092</td>
</tr>
</tbody>
</table>

Training the fault classifier using DWT and BPN With/Without Clarke’s Transformation.

The designed network takes in sets of 12 inputs (wavelet coefficient detail, wavelet coefficient absolute detail and wavelet energy coefficient. The network has four outputs, each of them corresponding to the fault condition of each of the three phases and one output for the ground line. Hence, the outputs are either 0 or 1, denoting the absence or presence of a fault on the corresponding line A, B, C or G, where A, B and C denote the three phases of the transmission line and G denotes the ground. Hence, various possible permutations can represent each of various faults accordingly. The proposed neural network should be able to accurately distinguish between the ten possible categories of faults. The truth table representing the faults and the ideal output for each of the faults is illustrated in Table 1.

Table 4 The obtained result of different fault using DWT and BPNN, with configuration (12-6-12-4)

<table>
<thead>
<tr>
<th>Type Fault</th>
<th>Distance</th>
<th>Rf</th>
<th>Fault Inception</th>
<th>Clarke’s Transformation</th>
<th>Without Clarke’s Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km</td>
<td>Ohm</td>
<td>Degree</td>
<td>MSE = 0.139410 and</td>
<td>MSE = 0.159702 and</td>
</tr>
<tr>
<td>AG</td>
<td>10</td>
<td>2</td>
<td>30</td>
<td>1.21624</td>
<td>1.05817</td>
</tr>
<tr>
<td>BG</td>
<td>25</td>
<td>2</td>
<td>30</td>
<td>0.07674</td>
<td>0.95209</td>
</tr>
<tr>
<td>CG</td>
<td>50</td>
<td>2</td>
<td>30</td>
<td>0.06927</td>
<td>0.25132</td>
</tr>
<tr>
<td>AB</td>
<td>75</td>
<td>2</td>
<td>30</td>
<td>1.03169</td>
<td>1.03222</td>
</tr>
<tr>
<td>AC</td>
<td>90</td>
<td>2</td>
<td>30</td>
<td>1.00565</td>
<td>0.22939</td>
</tr>
<tr>
<td>BC</td>
<td>10</td>
<td>2</td>
<td>30</td>
<td>0.14976</td>
<td>1.01003</td>
</tr>
<tr>
<td>ABG</td>
<td>25</td>
<td>2</td>
<td>30</td>
<td>1.38861</td>
<td>0.78583</td>
</tr>
<tr>
<td>ACG</td>
<td>50</td>
<td>2</td>
<td>30</td>
<td>1.03445</td>
<td>0.01978</td>
</tr>
<tr>
<td>BCG</td>
<td>75</td>
<td>2</td>
<td>30</td>
<td>0.21671</td>
<td>0.15051</td>
</tr>
<tr>
<td>ABC</td>
<td>90</td>
<td>2</td>
<td>30</td>
<td>1.01254</td>
<td>0.98616</td>
</tr>
</tbody>
</table>

Table 4 shows the results of fault classification and detection on single circuit transmission lines with fault resistance 2 ohm and the fault inception at angle of 30 degrees at various distances, as well as the training, performance plot of the neural network 12 - 6 – 12 - 4 (12 neurons in the input layer, 2 hidden layers with 12 and 6 neurons in them, respectively, and 4 neurons in the output layer). Table 4 shows the results of DWT and BPNN training without Clarke’s transformation, where the Mean Square Error (MSE) was 0.159702 and the mean absolute error (MAE) was 0.30657. For the results of DWT and BPNN training obtained with Clarke's transformation, the MSE was 0.139410 and MAE was 0.169911. The results above show that using the Clarke’s transformation had lesser error than without using Clarke's transformation.
Table 5 shows the results of fault classification and detection on single circuit transmission lines with fault resistance 2 ohm and the fault inception at angle of 30 degrees at various distances of errors, as well as the training, performance plot of the neural network 12-10-20-4 (12 neurons in the input layer, 2 hidden layers with 10 and 20 neurons in them, respectively, and 4 neurons in the output layer). Table 5 shows the results of DWT and BPNN training without Clarke’s transformation, where the mean Square Error (MSE) was 0.139810 and the mean absolute error (MAE) was 0.265709. For the results of DWT and BPNN training with Clarke’s transformation, the MSE was 0.105410 and MAE was 0.166937. The results above show that the outcome obtained using Clarke transformation became smaller.

Figure 6. Mean-square error performance of the network configuration (12-10-20-4) with Clarke’s transformation

Figure 6. shows the training performance plot of the neural network 12 – 10 – 20 - 4 neurons in the input layer, 2 hidden layers with 10 and 20 neurons in them respectively and four neurons in the output layer with Clarke transformation. It can be seen that the best validation performance in terms of the Mean Square Error (MSE) by the end of the training process is 0.105410 and MAE is 0.166937.
Figure 7 shows the training performance plot of the neural network 12 – 10 – 20 - 4 neurons in the input layer, 2 hidden layers with 10 and 20 neurons in them, respectively, and four neurons in the output layer without Clarke’s transformation. The best validation performance in term of the Mean Square Error (MSE) by the end of the training process was 0.139810, while the MAE is 0.265709.

Conclusion

This paper developed the technique which is the linking discrete wavelet transform (DWT) and back-propagation neural network (BPNN) based on the Clarke transformation for fault classification and detect on single circuit transmission lines. This study also includes comparison on the results of training BPNN and DWT with and without Clarke’s transformation, where the results show that using the Clarke’s transformation in training will produce smaller MSE and MAE, compared with without transformation Clarke’s, among the three structures, the Architecture result was the best, which was 12 – 10 – 20 - 4. This technique applies Daubechies4 (db4) as a mother wavelet using in this paper, the performance shows that the proposed technique gives good accuracy of transient classification.

Acknowledgment

The authors would like to express their gratitude to Universiti Teknologi Malaysia, The State Polytechnic of Ujung Pandang, PT. PLN (Persero) of South Sulawesi and the Government of South Sulawesi, Indonesia for providing the financial and technical support for this research.

Reference